

Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project

Survey Results of Machhannala Reservoir Location | Central Gujarat

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | 24 September 2021 Final Report

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

Document Control

Document Information

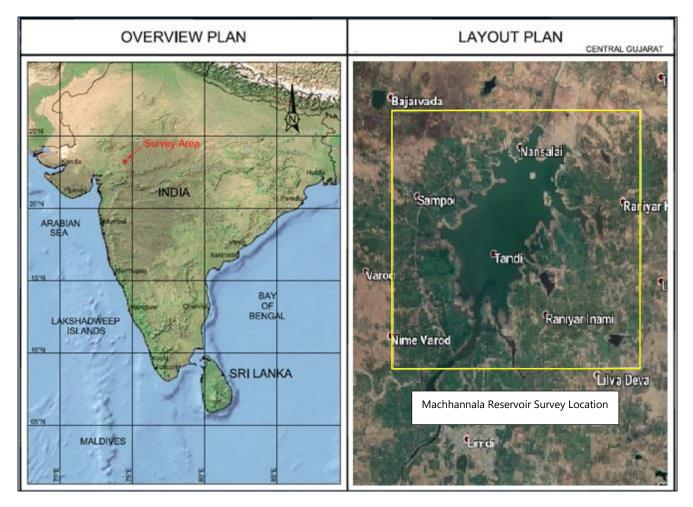
Project Title	Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project
Document Title	Survey Results of Machhannala Reservoir Location
Fugro Project No.	J-HYD-20-174630
Fugro Document No.	JHYD20-174630-Volume 4-Machhannala Reservoir/R2
Revision Number	[02]
Issue Status	Final Report

Client Information

Client	Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat	
Client Address	Executive Engineer, W.R.I. Division, C – 9, Multistoried Building, Lal Darvaja, Ahmedabad, Gujarat - 380001	
Client Contact	Mr. Piyush Bhattacharjee	
Client Document No.	NOA NNo.WRIDn/SK/NOA/1588/2020 Dated 09 November 2020	

Distribution List

Revision Details	Distribution Details	Hard copy	Soft Copy	
[02]	a) Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat		PDF	
R2 [02]	b) FSINPVT Archive		PDF	


Revision History

Rev	Date	Status	Prepared By	Checked By	Approved By
[02]	24 September 2021	Final Report	Alok A /Sukla C.	G.N. Hariharan	Rahul Patkar

LOCATION MAP

EXECUTIVE SUMMARY

Survey Overview- Machhannala Reservoir Location

Preamble:	The Gujarat State Government is implementing World Bank assisted national hydrology project. This project aims to improve the planning, development, and management of water resources, as well as flood forecasting and reservoir operations in real-time. Various activities, including Sediment survey, Water Quality monitoring have been planned under this project. Water Resources department have evolved a comprehensive plan for periodic assessment of reservoir storage capacity and sedimentation of eleven (11) reservoirs.
	In this regard, Narmada Water Resources, Water Supply and Kalpsar Department/ Government of Gujarat contracted Fugro Survey (India) Pvt. Ltd. (FSINPVT) to carry out the Bathymetry and Topography survey. Fugro's scope of work consist of Bathymetry and Topography survey at the eleven (11) reservoirs In order to complete the scope, the survey was carried out in two passes at Machhannala reservoir location;
Data Acquisition:	 <u>Pass 1</u>: Bathymetry / Hydrographic Survey. <u>Pass 2</u>: Topographical Survey FSINPVT mobilised their bathymetry and topographical survey team and equipment along with survey boat 'Polaris' in the months of February -March 2021 and June 2021 respectively, in order to acquire survey data as per mutually agreed scope and relevant survey specifications.
Survey Location	Machhannala Reservoir, Nansalai village, Jhalod Taluka, Dahod District, Gujarat.
Survey Geodesy:	The survey was conducted in WGS 84 datum, Universal Transverse Mercator (UTM) Projection, Zone 43 N, CM 075°E.
Scope Compliance & Meets Client's objectives:	 FSINPVT performed this survey methodically as per the scope of work defined in the contract and the results obtained have met the client's objectives in following areas: To assess the reservoir storage capacity; To assess the variations in the reservoir capacity; To estimate and study sedimentation behaviour in horizontal zones and vertical zones, namely dead storage, live storage and flood storage; To upgrade Elevation–Area-Capacity tables / curves of reservoir at regular intervals; To create historical database for further water resources usage planning.
Accuracy and Reliability	The accuracy of the data logged was ensured by calibrating each and every sensor deployed in the current survey. Statistical techniques were applied during the execution of the survey to ensure that the results of survey conform to the agreed levels of accuracy and precision.
Tidal Corrections	All raw water depths were reduced to reservoir water levels. The water level heights or reservoir water levels w.r.t. MSL were observed for the entire survey period and the same was used to calculate the reservoir bed heights w.r.t. MSL.

Survey Findings – Machhannala Reservoir Location			
Reservoir Bed Heights	In general, lowest reservoir bed level was found at the upstream face of the dam and it becomes less deeper as we go further upstream from the dam face. Lowest reservoir bed level recorded during bathymetry survey was 258.6 m (415 146 mE, 2 550 256 mN) w.r.t. MSL.		
Capacity Survey (2020- 2021)	Elevation Area Capacity table and curve of Machhannala reservoir was prepared based on bathymetry and topography survey data acquired at 25 m line spacing and 25 m x 25 m grid interval respectively. The processed xyz data was used to prepare DTM. Capacity and areas at various elevations from lowest bed level (258.6 m) to FRL (277.64 m) was calculated using GIS software.		
Revised elevation area capacity details	In comparison with 1982 Original Project data, the present survey results indicate that the gross storage capacity has decreased.		
Loss in gross storage capacity	As per 2020-21 survey results, the loss in Gross storage capacity w.r.t. 1982 or volume of sediment deposited in the Machhannala reservoir is 4.80 Mm ³ .		
Trap efficiency & Sedimentation Index	Trap Efficiency and sedimentation Index calculated for Machhannala reservoir as per methodology give in IS 12182-1987 is 95% and 7.38 x 10^{10} s ² /m respectively		
Sedimentation rate	The rate of siltation in Machhannala reservoir is 0.123 Mm ³ /year		
Average rate of siltation	The observed rate of siltation in the Machhannala reservoir during the 39 year life span (1982 – 2021), works out to 5.03 Ha m/100 sq km/year.		
Annual % loss	The annual % loss in gross storage capacity for Machhannala reservoir during the 39 year life span is 0.32% and hence, the reservoir is classified as "Significant category" as per IS 12182 (1987).		

CONTENTS

1.	Introduction	1	
1.1	General	1	
1.2	Study Area	2	
1.3	Geology of Study Area	4	
1.4	Soil Types	4	
1.5	Machhannala Reservoir Characteristics	4	
1.6	Project Objectives	6	
1.7	Scope of Work	6	
	1.7.1 Pass 1: Bathymetry / Hydrographic Survey	6	
	1.7.2 Pass 2: Topographical Survey	7	
1.8	Survey Execution	7	
1.9	Reference Documents	7	
1.10	Deliverables	7	
2.	Survey Specifications and Resources	8	
2.1	Survey Geodesy	8	
2.2	Horizontal Control	8	
2.3	Vertical Control / Water Level Corrections	9	
2.4	Accuracy and Precision of Results	9	
2.5	Survey Personnel Deployed	9	
2.6	Equipment Deployed	10	
2.7	' Survey Vessel		
2.8	Survey Database Used		
3.	Survey Data Acquisition		
3.1	Survey planning, Preparation & Transportation to Site	12	
3.2	Equipment Setup Configuration and Calibration	12	
3.3	Field Calibration and Verifications	12	
	3.3.1 Heading Sensor Alignment	12	
	3.3.2 Navigation System – DGNSS	13	
	3.3.3 Sound Velocity Measurements	13	
	3.3.4 Heave Compensator	13	
24	3.3.5 Single Beam Echosounder	13 14	
3.4	Data Acquisition and Online Quality Control		
2 5	3.4.1 On-line QC of Data Logged	14	
3.5	Topography Survey Control of Work	15	
	3.5.1 RTK Verification3.5.2 RTK Position Comparison	15 15	
	3.5.3 Topographical Survey Methodology	15	
		15	

3.6	Survey Coverage and Scope Completion	18
4.	Data Processing and Interpretation	19
4.1	Navigation and Positioning	19
4.2	Bathymetry Data Processing	19
4.3	Creating Digital Terrain Model (DTM)	20
4.4	Development of Area Capacity Curves	20
4.5	Sedimentation in Different Zones of Reservoir	21
4.6	Charting the Results of Bathymetry and Topography Data	22
5.	Survey Results – Machhannala Reservoir	23
5.1	Reservoir Bed Heights	23
5.2	Elevation Area Capacity Curve (2021)	28
5.3	Comparison of Elevation Capacity Details	31
5.4	Sedimentation in Reservoir	33
6.	Conclusions	40
7.	References	41

APPENDICES

Appendix ADiary of EventsAppendix BSurvey Vessel Sensor OffsetsAppendix CEquipment Layout DiagramAppendix DResults of Field Calibrations / VerificationsAppendix EBenchmark DescriptionsAppendix FClient Supplied Capacity Curve (1982 and 1999)Appendix GList of Charts

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

TABLES

Table 1.1: Client Supplied Machhannala Reservoir Salient Features	4
Table 1.2: Machhannala Reservoir details for Bathymetry and Topography Survey	6
Table 1.3: Reference Documentation	7
Table 2.1: Geodetic Datum, Projection Parameters	8
Table 2.2: Observed Reservoir Water Level Heights at Machhannala Reservoir	9
Table 2.3: List of Survey Personnel – Bathymetry Survey 'Polaris'	9
Table 2.4: List of Survey Personnel – Topography Survey	10
Table 2.5: List of Personnel – Onshore Project Management and Data QC	10
Table 2.6: Survey Equipment / Systems Deployed for Bathymetry Survey in Polaris	10
Table 2.7: Survey Equipment / Systems Deployed for Topographical Survey	10
Table 3.1: Results of Positioning System Verification	13
Table 3.2: Summary of Single Beam Echosounder Calibration Results by 'Bar Check' Method	14
Table 3.3: Results of RTK Position Comparison	15
Table 5.1: Revised Elevation Area Capacity table at every 0.1 m interval starting from lowest bed	evel
to FRL for the Survey Year 2021	28
Table 5.2: Comparison of Elevation Capacity details of 2021, 1999 and 1982 data	31
Table 5.3: Sedimentation in Machhannala Reservoir	33
Table 5.4: Trap Efficiency and Sedimentation Index for Machhannala Reservoir	33
Table 5.5: Sedimentation Volumes from Surveys of Previous Year	34
Table 5.6: Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval	35

FIGURES

Figure 1.1: Mahi basin showing major tributaries – Drainage and sub- basins (India-WRIS, 2014)	3
Figure 2.1: Survey boat Polaris	11
Figure 3.1: Machhannala Dam Benchmark (FSL-TBM)	16
Figure 3.2: Temporary Benchmark (TBM-02)	17
Figure 3.3: Photograph showing rock exposure and steep relief of ground noticed close to waterline	e 17
Figure 4.1: Reservoir Bed Height Calculation w.r.t. MSL	19
Figure 4.2: Sedimentation in different zones of reservoir (Ref: IS 5477-Part 1,1999)	21
Figure 5.1: Image showing gridded SBES Bathymetry and topography data (superimposed with	
satellite imagery) of reservoir bed heights in metres from lowest bed level to FRL	24
Figure 5.2: Image showing gridded SBES Bathymetry and topography data of reservoir bed heights	in
metres from lowest bed level to FRL.	25
Figure 5.3: 3D view of Machhannala Reservoir	26
Figure 5.4: Photographs A, B, C and D showing rock exposures and shallow depths in the northern,	
north-western, southern and western areas within Machhannala Reservoir respectively	27
Figure 5.5: Area capacity curve for 2021 survey compared with elevation capacity details of 1982 and	d
1999 for Machhannala Reservoir	32

LIST OF ABBREVATIONS

ВМ	Benchmark
Ch	Channel
СМ	Central Meridian
CVT	Calibration, Verification & Test
DF	Dual Frequency
DGNSS	Differential Global Navigation Satellite System
DPR	Daily Progress Report
FBF	Fugro Binary Format
FRL	Full Reservoir Level
FSINPVT	Fugro Survey (India) Private Limited
FSL	Full Supply Level
ft	Feet
GLONASS	Global Navigation Satellite System
GPS	Global Positioning System
На	Hectare
HSE	Health, Safety and Environment
km	kilometre
m	metre
M ft ³	Millions cubic feet
M m ³	Millions cubic meter
MDDL	Minimum Draw Down Level
m/s	meter per second
ms	milliseconds
MSL	Mean Sea Level
OEM	Original Equipment Manufacturer
QA/QC	Quality Assurance / Quality Control
QMS	Quality Management System
Rel	Release
Rev	Revision
RL	Reference Level
SBES	Single beam Echosounder
Sr	Senior
SoW	Scope of Work
UTM	Universal Transverse Mercator
WGS	World Geodetic System
w.r.t	With respect to
	1

UNITS

UTM grid coordinates and all linear measurements are reported in metres [m].

Angular values are reported in degrees (°).

Time and dates are reported as "18:00 on 23 September 2021

1. Introduction

1.1 General

Reservoirs originated by the construction of dams, is essential for the sustainable health and welfare of civilizations since it supplies water for human consumption, irrigation and energy production. Furthermore, dam reservoirs are used for recreation, navigation and they provide safety in the downstream valleys against extreme flood events and droughts (Bengtsson et al., 2012). All reservoirs are subjected to sedimentation which, without adequate prevention and mitigation counter-measures, threatens their sustainability.

Reservoir sedimentation is the gradual accumulation of the incoming sediment load from a river. This accumulation is a serious problem in many parts of the world and has severe consequences for water management, flood control, and production of energy. Sedimentation affects the safety of dams and reduces energy production, storage, discharge capacity and flood attenuation capabilities. It increases loads on the dam and gates, damages mechanical equipment and creates a wide range of environmental impacts (Schleiss et al., 2016).

Reservoir sedimentation is a process of erosion, transportation, deposition and compaction of sediments carried into reservoirs formed and contained by dams. In unregulated, mature rivers with stable catchments, sediment processes are relatively balanced. Construction of a dam decreases flow velocities, initiating or accelerating sedimentation.

Most of the world's reservoirs are in the continuous sediment accumulation stage. Many were designed by estimating sedimentation rates in order to provide a pool with sufficient volume to achieve a specified design life. However, this design life is typically far less than what is actually achievable. Therefore, managing reservoirs to achieve a full sediment balance is essential in order to maximize their lives. As every year sediment gets deposited in dead storage and in live storage of the reservoir, it has long and short range impact on the storage capacity of reservoir (Schellenberg et al., 2017). Correct assessment of the reservoir storage capacity is essential for assessing useful life of the reservoir as well as optimum reservoir operation schedule.

The Gujarat State Government is implementing World Bank assisted national hydrology project. This project aims to improve the planning, development, and management of water resources, as well as flood forecasting and reservoir operations in real-time. Various activities, including Sediment survey, Water Quality monitoring have been planned under this project. Water Resources department have evolved a comprehensive plan for periodic assessment of reservoir storage capacity and sedimentation of eleven (11) reservoirs.

In this regard, Narmada Water Resources, Water Supply and Kalpsar Department/ Government of Gujarat contracted Fugro Survey (India) Pvt. Ltd. (FSINPVT) to carry out the Bathymetry and Topography survey. Fugro's scope of work consist of Bathymetry and Topography survey at the eleven (11) reservoir as specified by Client.

These survey services comprised of the provision of suitable personnel and equipment in order to obtain, interpret and report on the bathymetry and topography within the survey area. In order to complete the scope, the survey was carried out in two passes at Machhannala reservoir;

Pass 1: Bathymetry / Hydrographic Survey;

Pass 2: Topographical Survey.

The bathymetry survey work was performed from the shallow draft boat 'Polaris'.

The survey reports are submitted in separate volumes for each reservoir location. This report covers **Bathymetry / Hydrographic and Topographical survey results for Machhannala Reservoir location.**

1.2 Study Area

The present study area – Machhannala reservoir falls under Machhan river basin (refer Figure 1.1) which is a part of Mahi basin; and is situated in Dahod district which is located in the north-east direction in state of Gujarat. This Machhan river basin consisting Machhan river is flowing through Jhalod taluka. Jhalod taluka is situated on the eastern border of the Gujarat state, 5 km from Kushalgarh Tehsil in Bunswara district of Rajasthan state border near Titodi river. The Jhalod taluka is bounded by Panchmahal district to the west, Limkheda & Dahod block to the south, Jhaua district (Madhya Pradesh) to the east and Banswada district (Rajasthan) to the north.

The catchment area of the Machhan river basin is 431 km² up to its meeting place with Anas River which is a major tributary of river Mahi (Shrimali, 2017).

The overall topography of the region is highly undulating and of varying slopes. The Machhan river basin can be topographically divided into parts; viz. hilly area and flat agricultural land area. Western and southern part of basin comprises hilly region, while central part consist of flat agricultural land. The ground in this basin area generally slopes from south-west to north-east (Guruji et al., 2008).

The data on land utilization and irrigation shows that, in Dahod district, cultivation and sowing land covers 3090 Ha, where area sown more than once covers 945 Ha. In the district, forest area covers 884 Ha (Nayak, 2014).

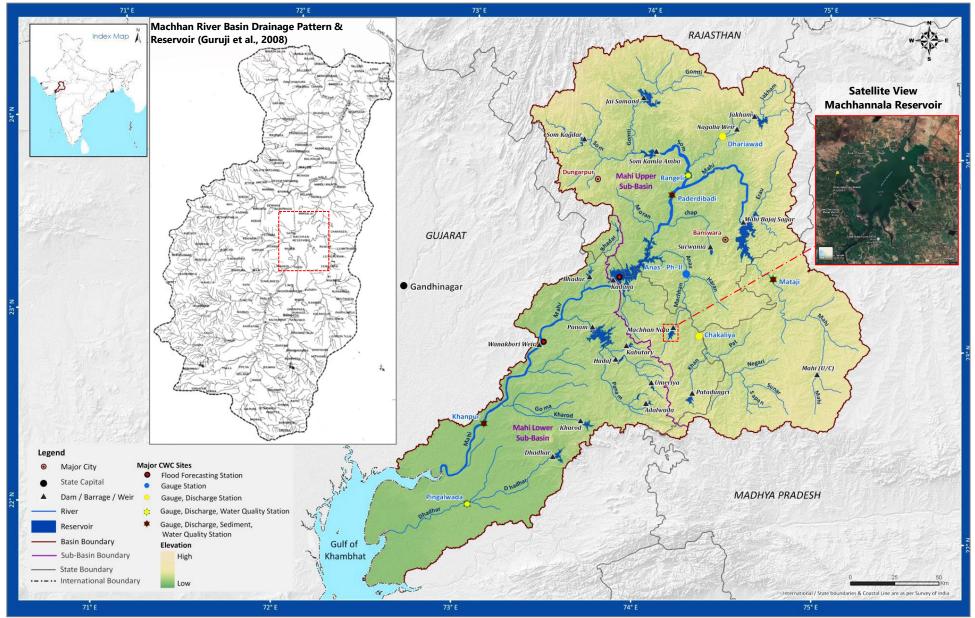


Figure 1.1: Mahi basin showing major tributaries - Drainage and sub- basins (India-WRIS, 2014)

1.3 Geology of Study Area

Basalts occupy the south-west part of the Machhan basin. It is found with irregular boundaries and extending from Patadungri (near Dahod) in the south and upto Jhalod in north. The basalts occur as small flat-topped to conical hills rising above the flatness of Precambrian terrain which is covered with residual black cotton soil. The area is covered by compact metamorphic rock of Proterozoic succession. Quartzite and Phyllite belonging to Lunawada group are encountered in the area. Along Quartzite and Phyllite, the south western boundary is observed by a cover of Deccan trap and infra trappen cretaceous rocks. The Deccan trap found in area is black in colour, weathered on top but becomes very compact at depth. It is formed due to volcanic activity.

Common rock types found in the basin are granites, gneisses, quartzite, schist and associated phyllites, slate etc. (Guruji et al., 2008).

1.4 Soil Types

The soil type of Dahod district is broadly categorized depending on the source rock, i.e., Phyllite, Granite and Basalt. Intense weathering of basalts in this area resulted in formation of black cotton soils which have high fertility value. In this area, sandy loamy soil (from granite) and yellowish light soil (from phyllite) are also found at places of intense weathering (Nayak, 2014).

1.5 Machhannala Reservoir Characteristics

The Machhannala reservoir for Machhannala dam is constructed over the Machhan river in India. It is located near Jhalod town, Dahod District in State of Gujarat. The Dahod district in Gujarat comes under heavy rainfall areas in Gujarat, having sub-tropical climate with moderately low humidity (Nayak, 2014).

The Machhannala dam is earthen (Rolled Filled Zoned) type dam and its reservoir's catchment area is 244.91 km². Salient features of the Machhannala reservoir are tabulated below:

Characteristics	Feature
Reservoir name	Machhannala Reservoir
Name of Dam	Machhannala Dam
Туре	Earthen (Rolled Filled Zoned)
Purpose	Irrigation
River	Machhan
Location	Nansalai village
Latitude	23° 3′ 00″ N
Longitude	74° 10′ 00″ E
Nearest Township	Jhalod
Taluka	Jhalod

Table 1.1: Client Supplied Machhannala Reservoir Salient Features

Characteristics	Feature
District	Dahod
State	Gujarat
Construction Started	1977
Construction Completed	1988
Year of Impounding	1982
Total Catchment Area	244.91 km ²
Gujarat	244.91 km ²
Other	0
Average Annual Rainfall	869.70 mm
Yield at	
i) 50% reliability	54.65 Mm ³
ii) 60% reliability	50.76 Mm ³
ii) 75% reliability	41.20 Mm ³
Standard Project Flood	159270 cusecs
Maximum Observed Flood	8585.92 cusecs
Reservoir Details	
Full Reservoir Level (F.R.L.)	277.64 m
Dead Storage Level	271.31 m
High Flood Level (H.F.L.)	281.33 m
Lowest flood level (L.W.L.)	271.30 m
Gross Storage (As per Project capacity)	37.91 Mm ³
Dead Storage at R.L. 271.31 m (As per Project capacity)	8.75 Mm ³
Live Storage (As per Project capacity)	29.16 Mm ³
Area at FRL (As per Project capacity)	7.96 km ²
Type of Spillway	Ogee
Length of Spillway	260 m
Spillway Crest Level	277.64 m
Top Level of Dam	283.80 m
Types of Gate	Ungated
Nos. of Gate	-
Maximum Height from Base of Footing	25.44 m
Maximum Length at top	2100 m
Gross Capacity (At FRL and as per Dec 1999 survey)	27.12 Mm ³
Dead Storage	5.92 Mm ³
Live Storage	21.20 Mm ³
Left Bank Main Canal	12300 m
Capacity	2.32 Cum/Sec

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **5** of 41

Characteristics	Feature	
Right Bank Main Canal	14.40 km	
Capacity	1.42 Cum/Sec	
Gross Command Area (G.C.A.)	3944 Ha.	
· · ·	(Left Bank: 2000, Right Bank: 1944)	
Culturable Command Area (C.C.A.)	2463 На.	
	(Left Bank: 1450, Right Bank: 1013)	
Runoff water in catchment	54.65 Mm ³	
Base Rock	Quartzite	

1.6 **Project Objectives**

Primarily the main objective of the survey was to:

- Assess the reservoir storage capacity;
- Assess the variations in the reservoir storage capacity;
- Create historical database for further water resources usage planning.
- However, the main objective of the bathymetry survey was to:
- Estimate and study the sedimentation behaviour of reservoirs in different zones including horizontal zones throughout the reservoirs as well as vertical zones namely:
 - a) Dead storage
 - b) Live storage
 - c) Flood storage
- Upgrade Elevation-Area-Capacity tables / curves of reservoirs at regular intervals.

Table 1.2 provides bathymetry and topography survey area details for Machhannala reservoir.

Table 1.2: Machhannala Reservoir details for Bathymetry and Topography Survey

	Actual Area (km ²) surveyed		
Name of Dam / Reservoir	Bathymetry Survey	Topography Survey	
Machhannala	2.98	4.07	

1.7 Scope of Work

To achieve the above objective, Fugro carried out survey for eleven (11) reservoir areas in two (02) passes. The scope of work undertaken for Machhannala reservoir is as follows:

1.7.1 Pass 1: Bathymetry / Hydrographic Survey

The scope of work for bathymetry survey conforms bathymetry survey for total area of approximately 2.98 km².

The following scope of work was undertaken in-order to achieve client objectives:

 Bathymetry / Hydrographic survey work was conducted using echosounder for assessment of reservoir capacity and sedimentation at Machhannala reservoir of Gujarat.

- Survey lines were run at 25 m segment line spacing and along the survey line continuous data of 25 m x 25 m grid point were captured so that each and every point is included. Additional survey lines were executed as and when required.
- DGNSS positioning system, Dual frequency singlebeam echosounder system along with associated Navigational system were deployed on all the survey lines.

1.7.2 Pass 2: Topographical Survey

Topographical survey was carried out using Total station and equivalent levelling instruments. The total area covered in Topographical survey is 4.07 km². Following scope of work was undertaken in order to achieve client objectives:

- Topographical survey was conducted to facilitate hydrographic survey so as to fill up the gaps between MWL area and reservoir submergence area till current water level for assessment of reservoir capacity and sedimentation at the reservoir locations.
- Topographical survey was carried out from FSL to present water level of reservoir, with sufficient overlap with hydrographic survey for preparing overall contour map of reservoir.
- The area not covered through hydrographic survey upto maximum water level (MWL), was surveyed by taking levels at 25 m interval along range lines laid at 25 m interval (25 m x 25 m grid).

1.8 Survey Execution

The survey boat 'Polaris' was mobilized at Machhannala reservoir location to carry out the survey. Survey operations were executed as per the mutually agreed survey execution schedule.

1.9 Reference Documents

Table 1.3: Reference Documentation

SI/No.	No. Document Name Document identity		
1	FSINPVT Quote / Contract	NOA NoWRIDn/SK/NOA/1588/2020 Dated 09 November 2020	
2 FSINPVT Survey Procedure		JHYD20-174630/SP/P0/Rev.0 dated 01 December 2020	

1.10 Deliverables

Final report and Charts / Drawings to be delivered as per the contract, as listed in <u>Appendix G</u> to this Report, have been duly submitted. Details of the Charts accompanying this report are also placed at <u>Appendix G</u>.

2. Survey Specifications and Resources

The bathymetry / hydrographic survey and topography survey conformed to the following mutually agreed scope of work and were conducted as per the methodology described in the standard work instruction by FSINPVT.

2.1 Survey Geodesy

The survey was conducted in WGS84 Datum and grid coordinates in terms of Universal Transverse Mercator (UTM) projection (Zone 43 N, CM 075° E) as per client's instruction. The details of the Geodetic parameters are as follows:

Global Positioning System Geodetic Parameters			
Datum:	World Geodetic System 1984		
Spheroid:	World Geodetic System 1984		
Semi major axis:	a = 6 378 137.000 m		
Inverse Flattening:	1/f = 298.257 223 563		
Map Projection:	Universal Transverse Mercator		
Grid System:	UTM Zone 43 N;		
Central Meridian:	075° 00' 00" East		
Latitude of Origin:	0° 00′ 00″ North		
False Easting:	500 000 m		
False Northing:	0 m		
Scale factor on Central Meridian:	0.9996		
Units:	Metre		
Notes:			
• The Client has specified the above Datum and Transformation parameters to be u			
for this survey.			
• Fugro's Starfix software suite always uses WGS84 as the primary datum for all geodetic calculations.			

Table 2.1: Geodetic Datum, Projection Parameters

2.2 Horizontal Control

Spatial Dual was used for positioning the survey vessel during this survey. Spatial Dual is a rugged GPS aided inertial navigation system that provides accurate position, velocity, acceleration and orientation under the most demanding conditions. It combines temperature calibrated accelerometers, gyroscopes, magnetometers and a pressure sensor with a dual antenna RTK GNSS receiver. They are coupled in a sophisticated fusion algorithm to deliver accurate and reliable navigation and orientation.

The computer running Starfix NG was used for navigation, data logging and online quality control of the survey data.

2.3 Vertical Control / Water Level Corrections

All vertical levels were reduced to respective water level references. The water level heights or reservoir water levels w.r.t. MSL were observed for the entire survey period and the same was used to calculate the reservoir bed height. Observed reservoir water level heights is tabulated below:

Date	Observed Reservoir Water Level Heights w.r.t. MSL at Machhannala Reservoir [m]	
20-02-2021	274.25	
21-02-2021	274.20	
22-02-2021	274.17	
23-02-2021	274.11	
24-02-2021	274.07	
25-02-2021	274.03	
26-02-2021	274.00	
27-02-2021	273.96	
28-02-2021	273.93	

Table 2.2: Observed Reservoir Water Level Heights at Machhannala Reservoir

2.4 Accuracy and Precision of Results

The accuracy of the data logged was ensured by calibrating each and every survey sensor deployed for the current survey, for eliminating systematic errors or bias. Internationally accepted survey work practices were adopted for carrying out such calibrations, sensor alignments and field verifications.

The quality of the data logged was monitored on-line using Fugro's on-line QC tools and ensured it met the agreed accuracy and precision levels. At the data processing, charting and reporting stages, the results of survey were further analysed and checked to ensure that they conformed to the agreed levels of accuracy and precision. The precision (or the repeatability) of the results of survey were controlled by adopting 'Statistical' techniques.

2.5 Survey Personnel Deployed

Following FSINPVT staffs were associated to bathymetry survey for this project.

Bathymetry Survey Personnel	
Personnel Name	Function
Arpit Bose	Party Chief / Surveyor
Mathiyazhagan V.	Engineer
Sunil Singh	Polaris Operator

Table 2.3: List of Survey Personnel – Bathymetry Survey 'Polaris'

Following FSINPVT staffs were associated to topography survey for this project.

Table 2.4: List of Survey Personnel – Topography Survey

Topography Survey Personnel		
Personnel Name	Function	
Arunabha Chakraborty+ Survey Assistants	Topography Survey Team	

Following onshore FSINPVT staffs were associated to this project.

Table 2.5: List of Personnel – Onshore Project Management and Data QC

Onshore Project Management and Data QC		
Rahul Patkar	Service Line Manager	
Vikas Walanj/Anantha Krishnan	Project Manager	
R.B. Jayaraman	Client Deliverable Manager	
Avijit Nag	Survey Manager	
G.N. Hariharan	Chief Geophysicist	
Avinash Vasudevan	Reporting Manager	
Prashant Mishra	Reporting Project Supervisor	
K. Srinivas	Data Centre Manager	

2.6 Equipment Deployed

Following equipment and systems were deployed for the survey work. The equipment setup and configuration diagram on the survey boat Polaris is placed at <u>Appendix C</u> to this document.

Equipment / System	Description / Make / Model/Resolution /Accuracies
Software / Navigation	Starfix.NG PC based data acquisition and survey vessel navigation package.
Positioning	Trimble BX-992 & Spatial Dual Receivers
Heading Sensor	Spatial Dual
Motion Sensor	Spatial Dual
Sound Velocity	Odom DigiBar Pro
Single beam Echosounder	Echotrac E20 Dual Frequency_Single Beam Echosounder

Table 2.6: Survey Equipment / Systems Deployed for Bathymetry Survey in Polaris

Table 2.7: Survey Equipment / Systems Deployed for Topographical Survey

	Equipment / System	Description / Make / Model/Resolution /Accuracies
Land Survey		GNSS RTK LYNX H6 System along with accessories and consumables.

2.7 Survey Vessel

Shallow draft boat 'Polaris' was used to carry out the bathymetry / hydrographic survey.

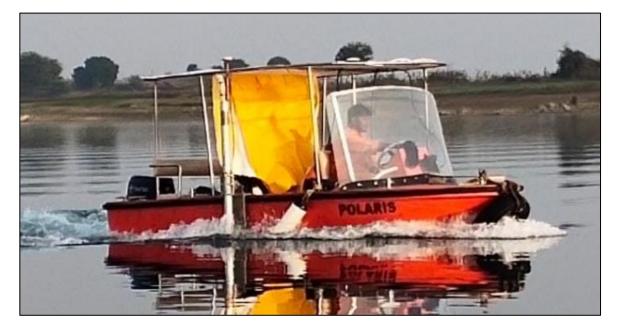


Figure 2.1: Survey boat Polaris

2.8 Survey Database Used

Details of all existing engineering structures within the survey area, as supplied by the Client and interface boundaries drawn between land and water body, shallow patches taken from Google Earth images, were used as a background file in the navigation system during the entire tenure of survey.

- Client supplied FRL/FSL RL height 277.64 m w.r.t. MSL
- Full Supply Level (FSL) 277.64 m w.r.t. MSL
- Water line 274.07 m approximately.

3. Survey Data Acquisition

3.1 Survey planning, Preparation & Transportation to Site

The bathymetry survey equipment and personnel with survey boat 'Polaris' arrived at Machhannala reservoir location on 16 February 2021 and equipment was mobilised on-board the survey boat on 17 February 2021.

After field testing / verification / calibration of all survey equipment bathymetry survey was carried out and completed on 01 March 2021. Refer <u>Appendix A</u> to this document for diary of events.

The topography survey equipment and personnel arrived at Machhannala reservoir location and commenced survey on 21 June 2021. The topography survey was completed on 24 June 2021.

3.2 Equipment Setup Configuration and Calibration

All survey equipment was installed and configured on-board the survey boat as per the 'Equipment Layout Diagram' placed at <u>Appendix C</u> to this document.

The location of the various survey sensors on the survey boat is given in the 'Vessel Offset Diagram' placed at <u>Appendix B</u> to this document.

3.3 Field Calibration and Verifications

All equipment used for the survey work were calibrated and bench tested prior to their mobilisation for this task. In addition, after installation on the survey vessels, extensive calibration, verification and tests were carried out in the field before deploying them for actual data acquisition. Standard survey methods were used for carrying out these calibrations / verifications and data acquisition, as described in the following paragraphs.

Refer to <u>Appendix D</u> of this document for the 'Results of the Calibrations / Verifications of Survey Sensors'.

3.3.1 Heading Sensor Alignment

Vessel heading was obtained onboard 'Polaris' from Spatial Dual. Spatial dual features dual antenna moving baseline RTK. This enables it to provide extremely accurate heading both at rest and at movement. It's a great option for situations where magnetic heading isn't possible due to interference or where extra precision is required. The system was tested at FSINPVT workshop prior to mobilization for the survey. The performance of the system was found to be satisfactory during the period of survey.

3.3.2 Navigation System – DGNSS

The Positioning System on board 'Polaris' was Spatial Dual. Position observations were done at Machhannala reservoir benchmark locations, using Trimble BX-992 and Spatial Dual receiver. Refer <u>Appendix E</u> for Benchmark description and <u>Appendix D</u> for details on position system verification results. The performance of the system was found to be satisfactory. Summary of the results of the position system verification is tabulated below:

Table 3.1: Results of Positioning System Verification

Sensor	Serial No.	Easting (mE)	Northing (mN)	Latitude	Longitude	Ellipsoidal Height (m)
Positioning System Verification		n Results With I	3X-992 and Spatia	al Dual Receiver (Po	laris)	
Trimble BX-992	025-00009601	415163.02	2550607.461	23°03′42.682″N	74°10′18.534″E	208.15
Spatial Dual	025-272968	415162.981	2550607.45	23°03′42.682″N	074°10′18.533″E	208.32
Difference		0.039	0.011			-0.17

3.3.3 Sound Velocity Measurements

Sound Velocity in the water column was measured in the survey area at regular intervals using sound velocity probe. Sound velocity profiles (cast) thus generated were used during post processing of SBES data.

3.3.4 Heave Compensator

Spatial dual is a high precision source for heave information. The system was tested at FSINPVT workshop prior to mobilization for the survey. The performance of the system was found to be satisfactory during the period of survey.

3.3.5 Single Beam Echosounder

Echotrac E20 dual frequency single beam echosounder was used for measuring water depths within the survey corridor. The echo sounder system was bench tested at FSINPVT workshop prior to mobilization for the survey. The echo sounder transducer was vertically side mounted on the survey boat and its draft below the waterline was measured and recorded. Heave compensator was connected to the echo sounder receiver. The echo sounder system was interfaced with the Starfix NG navigation and survey system for logging the depth vs position data. Sound velocity within water column was measured on a regular basis using sound velocity profiler and average sound velocity was entered in the top side unit of the echo sounder.

Table 3.2: Summary of Single Beam Echosounder Calibration Results by 'Bar Check' Method

Date	SBES Sensor Type	Average (m)	Standard Deviation		
Summary of SBES Calibration Results on-board 'Polaris'					
17 February 2021	Echotrac E20 SBES	0.00	0.0038		

3.4 Data Acquisition and Online Quality Control

On successful completion of mobilization and Calibration, Verification & Testing of all equipment as per the standard work practices, the survey data acquisition commenced as per the project plan to achieve the objectives of survey.

Navigation System, Heading and Bathymetry

The navigation data and vessel heading from the spatial dual, was logged continuously and monitored using the Starfix NG navigation suite. The survey data was logged in Fugro Binary Format (.FBF).

Event Markings

The on-line computer system was interfaced for closure to the analogue traces on the survey vessel. Event marks corresponding to position fixes were generated automatically from the on-line Navigation Computer interface at regular intervals of 25 m across the ground.

Survey Run-Line Logs

Survey lines were planned as per scope of work and digital pre-plots for the area was prepared prior to commencement of survey. These lines were run on the navigational computer while doing the survey and this enabled the Navigator to guide the boat along the planned survey line all the time. A survey line log was maintained which consists the particulars about the surveyed line, Date, Time, Session Number, Event Number, KP, Sensors Deployed and all the significant events occurred during the survey.

3.4.1 On-line QC of Data Logged

FSINPVT follows standard procedures and has standard formats for documenting the Quality Control of acquired data for each sensor deployed during the survey. Experienced operators were constantly monitoring the real time data quality as the survey progressed. A log of profiles was maintained, and quality of data was noted. Re-shoots of survey lines were carried out as and when required.

All computers connected to the Navigation network were synchronized with the GPS (high precision) 1PPS time signal by means of the Starfix Timing Module, allowing all data to be time stamped.

The quality of data being recorded was constantly monitored in real time and fine-tuned to obtain the best quality. The data / record obtained from each survey sensor such as Navigation, Heading, SBES and Spatial dual were quality checked and an extract of the same were made available for verification and confirmation to proceed further.

3.5 Topography Survey Control of Work

3.5.1 RTK Verification

The RTK system verification was carried out by 'Static Observations' for 30 minutes at Machhannala Dam Benchmark (FSL-TBM) and Temporary Benchmark location (TBM-02).

3.5.2 RTK Position Comparison

The RTK observed position at Machhannala benchmark (FSL-TBM) and Temporary Benchmark location (TBM-02) was compared with Trimble BX-992 Receiver position. Results of the comparison is tabulated below:

Sensor	Model No.	Easting (mE)	Northing (mN)		
FSL-TBM (WGS 84, UTM Projection, CM 075°E, Zone 43N)					
Trimble BX-992	025-00009601	415163.020	2550607.461		
RTK Rover 1	Lynx-H6	415163.042	2550607.455		
Difference		-0.022	0.006		
FSL-TBM (WGS 84, UTM Projection, CM 075°E, Zone 43N)					
Trimble BX-992	025-00009601	415163.020	2550607.461		
RTK Rover 2	Lynx-H6	415163.018	2550607.465		
Difference		0.002	-0.004		
FSL-TBM (WGS 84, UTM Projection, CM 075°E, Zone 43N)					
Trimble BX-992	025-00009601	415163.020	2550607.461		
RTK Rover 3	Lynx-H6	415163.030	2550607.464		
Difference		-0.010	-0.003		

Table 3.3: Results of RTK Position Comparison

Refer Appendix D for RTK comparison details.

3.5.3 Topographical Survey Methodology

The area not covered under hydrographic survey i.e., between the existing water level at the time of survey up to Full Supply Level (FSL)- 277.640 m has been carried out by topography survey method.

The topography survey was carried out using GNSS RTK Lynx-H6 system. The RTK system consist of two units i.e., Base receiver and Rover receiver. Corrected GPS signals are transmitted in real time from a base receiver at a known location to one or more rover receivers. Following steps were carried out while commencing and executing the topography survey operations:

- Components of Base and Rover receivers were setup at benchmark locations.
- Tripod was setup at base station i.e., at the temporary benchmark location (TBM-02) established by Fugro by levelling method and thereafter the tripod was levelled and the RTK base station was configured.
- The rover receiver along with RTK pole was installed at FSL-TBM location. Static observation was carried out subsequently as part of verification.
- The Base receiver is installed at TBM-02 and configured the system with known coordinates and elevation (levelling carried out by Fugro). The rover receiver position and elevation are verified by setting up the system at FSL-TBM.
- Thereafter survey commenced by placing the rover receiver at 25 m grid interval and logging the position (easting, northing) and the elevation in relation to the base.
- Whenever the radio RTK coverage between rover receiver and base receiver is reduced, new check points were created and the base receiver was shifted to this newly created check point.
- Above procedure was followed and survey completed from the existing water line till achieving the HFL mark.

Figure 3.1: Machhannala Dam Benchmark (FSL-TBM)

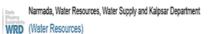


Figure 3.2: Temporary Benchmark (TBM-02)

Figure 3.3: Photograph showing rock exposure and steep relief of ground noticed close to waterline

3.6 Survey Coverage and Scope Completion

FSINPVT carried out the bathymetry and topography survey operation methodically to meet the client's objectives from this survey.

- The survey work was carried out on par with the mutually agreed scope and objectives mentioned in the <u>Section 1.6</u> of this document.
- Survey scope from existing water level up to the Full Supply Level (FSL)- 277.640 m, was achieved by undertaking topography survey.

All the bathymetric survey lines were run at appropriate spacing i.e., 25 m, so as to obtain data of 25 m x 25 m grid points.

4. Data Processing and Interpretation

4.1 Navigation and Positioning

- The survey data was logged in Fugro Binary format (FBF), and processed using the Starfix.Proc software. Heading, motion and position data were processed and checked to ensure good data quality. The position data for the various survey sensors were processed and plotted to allow commencement of the interpretation of the bathymetry data.
- The measured offsets for all survey sensors were entered into the navigation system and processed using Starfix.Proc to enable track charts to be plotted and 'corrected' navigation files to be integrated with other sensor data at a later stage. These included:
 - GPS position absolute of the primary & secondary positioning systems.
 - o Common Reference Point

4.2 Bathymetry Data Processing

- SBES bathymetry data was reduced to MSL, applying observed Reservoir Water Level / Height heights recorded at Dam. (Refer Figure 4.1)
- The data was filtered, cleaned, and combined to create geographically positioned bathymetric data set that has been corrected for MSL and sound speed.
- Starfix.Workbench & Mproc was used to quality check the data.

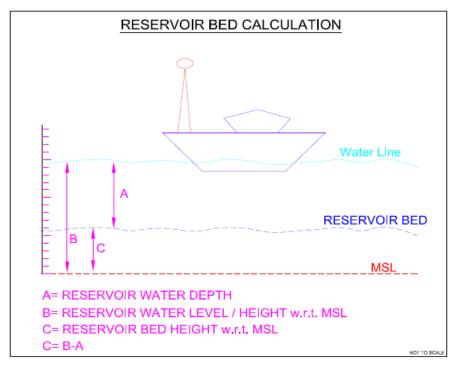
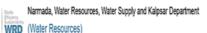



Figure 4.1: Reservoir Bed Height Calculation w.r.t. MSL

4.3 Creating Digital Terrain Model (DTM)

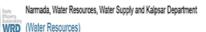
The bathymetric data and topographic data were then combined to create a vector point shapefile in GIS software. The boundary of the reservoir was then digitized around the point shapefile. Two types of boundary were constructed. First boundary is outside the reservoir and second type of boundary consisted of the boundary around islands in the reservoir. This point shapefile was then utilized for creation of DTM. The DTM for the reservoir can be created by use of various algorithms such as Kriging, Radial Basis function, Inverse Distance Weighting (IDW) method and local polynomial function. Among these various methods, IDW can give the best interpolation accuracy for reservoirs (Shiferaw and Abebe, 2020). IDW method is a weighted average interpolation method. For every grid node, the resulting value Z will be calculated using the formula as given in (1).

$$Z = \frac{\sum_{i=1}^{n} \frac{Z_i}{r_i^p}}{\sum_{i=1}^{n} \frac{1}{r_i^p}}$$

(1)

Where:

- Z_i is the known value at point i,
- r_i is the distance from grid node to point i,
- p is the weighting power,
- n is the number of points in Search Ellipse.


Therefore, in this study IDW method has been used for the interpolation for the creation of DTM. The DTM thus created was saved in Tiff format. The created DTM was smoothed by use of various filtering operations. Thereafter, the DTM was clipped through extract by mask operations using the mask of boundary shapefiles created before. The final DTM thus obtained after clipping the DTM was then used for further analysis.

Contour maps at 1 m interval was also prepared using the DTM in Starfix.Workbench software.

4.4 Development of Area Capacity Curves

Area Capacity curves are useful tools for operational and planning purposes such as water management and sediment monitoring. By comparing the area capacity curves at different times, the rate of sedimentation in the reservoirs can be determined. These curves show the capacity and surface area of the reservoir at an indicated elevation above the reference elevation level. The elevation area capacity curves are prepared using the DTM for the reservoir site. For, this study the reference elevation level used for the preparation of Area capacity curve is 258.6 m which is the lowest bed level for the reservoir. The incremental value for elevation used for developing these curves is kept at 0.1 m. The surface area at the successive intervals was obtained in GIS software by intersecting the DTM with horizontal planes at an interval of 0.1 m starting from the zero-bed elevation till the MWL. The incremental volume (ΔV_i) between two contours was then calculated and integrated from bottom to specified elevation to obtain

the required capacity at specified elevation. The method and formula used for volume calculation is the cone formula given by the equation 2.

$$\Delta V = \frac{h}{2} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right) \tag{2}$$

Where, ΔV is the incremental volume between two successive elevations; h is the incremental height between two successive elevations; A1 and A2 are the areas of two successive elevations.

4.5 Sedimentation in Different Zones of Reservoir

The sediment entering into the reservoir carried by the flowing river from the upstream catchments get deposited in the reservoir with the passage of time and reduces the live as well as dead storage capacity of the reservoir. This causes the bed level near the dam to rise. Live storage is from the level MDDL to FRL. Dead storage is from Bed Level to MDDL. Gross storage is from Bed Level to FRL. The sedimentation in different zones of reservoir is shown in Figure 4.2.

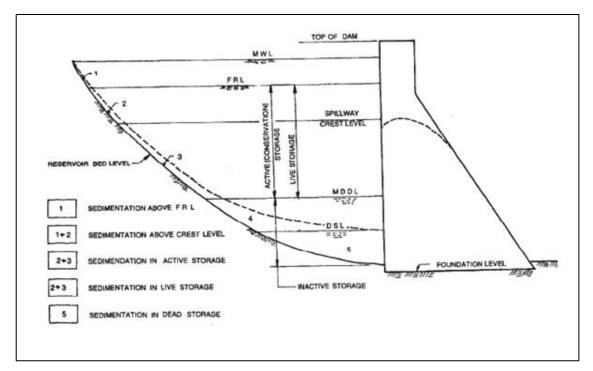


Figure 4.2: Sedimentation in different zones of reservoir (Ref: IS 5477-Part 1,1999)

The trap efficiency and the silt index has been calculated based on the methodology given in IS 12182, 1987. The gross capacity of reservoir as per present survey at FSL is 33.11 Mm³ and client supplied Mean Annual inflow is 54.65 Mm³. The values of trap efficiency were calculated using Brune's curve for the capacity inflow ratio for the reservoir. The silt index is calculated as the ratio of period of retention and flow velocity in the reservoir. The details of the calculations of period of retention and flow velocity are given in standard codes such as IS 12182, 1987. The values for Machhannala reservoir are shown in Table 5.4.

At last, sedimentation volumes are compared with sedimentation volumes from previous year surveys (if available) and rate of sedimentation, loss of capacity as well as annual loss percentage is computed and compared with the values of previous years (if available) to arrive at meaningful conclusions. The sedimentation quantities as well as loss of storage capacities, rate of siltation as well as trap efficiency and sedimentation index are shown in Section 5.3.

The Sedimentation rate and Annual % loss is calculated using the equations (3) and (4)

Sedimentation rate $(Ha m/100 Sq km/year) = \frac{100* loss of gross capacity (Ha m)}{Catchment Area (Sq km)*Number of years between the surveys}$ (3) $Annual \% loss = \frac{Annual Sedimentation rate (M cu m)}{Original Gross capacity of reservoir (M cu m)} x 100$ (4)

4.6 Charting the Results of Bathymetry and Topography Data

- Chart showing reservoir bed heights are provided for the current survey at 1:6000 scale.
- Chart showing contour map at 1 m interval for Machhannala reservoir is also provided at 1:6000 scale.
- Chart showing reservoir bed relief image prepared from bathymetry and topography survey data is provided at 1:6000 scale.
- L-section of the reservoir and C-section at 100 m interval are provided as soft copy.

The results of the survey were submitted as per the documents in the 'List of Deliverables' placed at <u>Appendix G.</u>

5. Survey Results – Machhannala Reservoir

Survey results are detailed in the following sections. The following text should be read in conjunction with the Charts as listed in <u>Appendix G</u> to this document.

Data acquisition for Machhannala reservoir was carried out up to Full Supply Level (FSL)/Full Reservoir Level (FRL) of 277.64 m.

5.1 Reservoir Bed Heights

The lowest reservoir bed level was found at the upstream face of the dam & it becomes less deeper as we go further upstream from the dam face.

The reservoir topography was uneven with reservoir bed level ranging 258.60 m to 277.64 m w.r.t. MSL.

The reservoir bed tends to get shallower as we go further towards east, west & south away from the reservoir dam wall within the survey area. Reservoir area is spreading towards east, west and south directions. At eastern side two islands are observed, while at southern side, one island is observed within the reservoir area.

Lowest reservoir bed level recorded was 258.6 m (415 146 mE, 2 550 256 mN) w.r.t. MSL, within the survey area.

The following figures show the gridded bathymetry and topography data for the Machhannala reservoir.

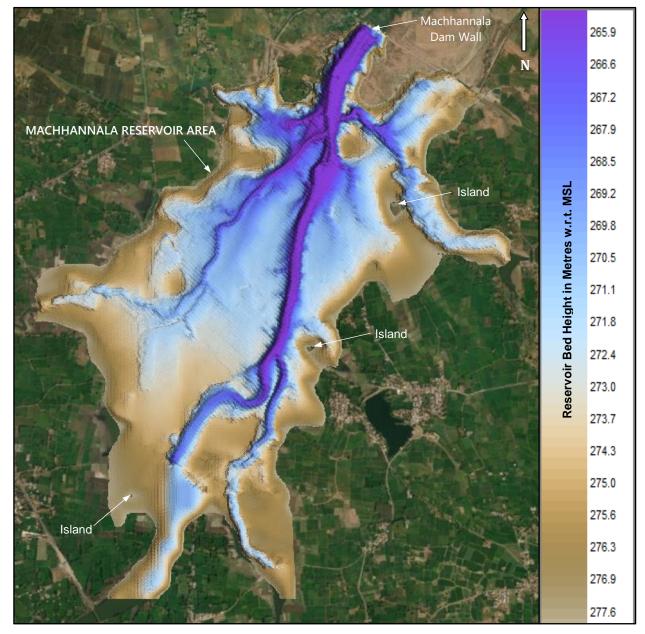


Figure 5.1: Image showing gridded SBES Bathymetry and topography data (superimposed with satellite imagery) of reservoir bed heights in metres from lowest bed level to FRL

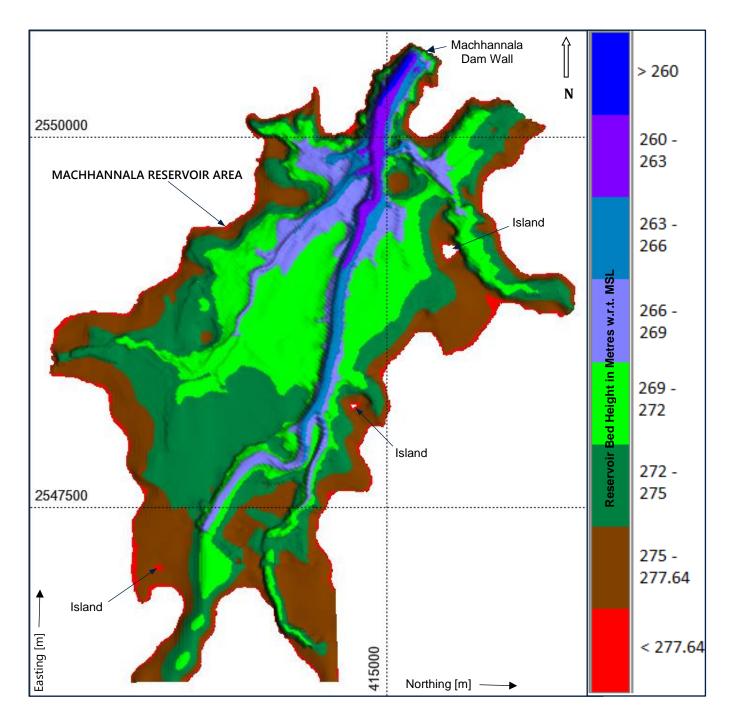


Figure 5.2: Image showing gridded SBES Bathymetry and topography data of reservoir bed heights in metres from lowest bed level to FRL.

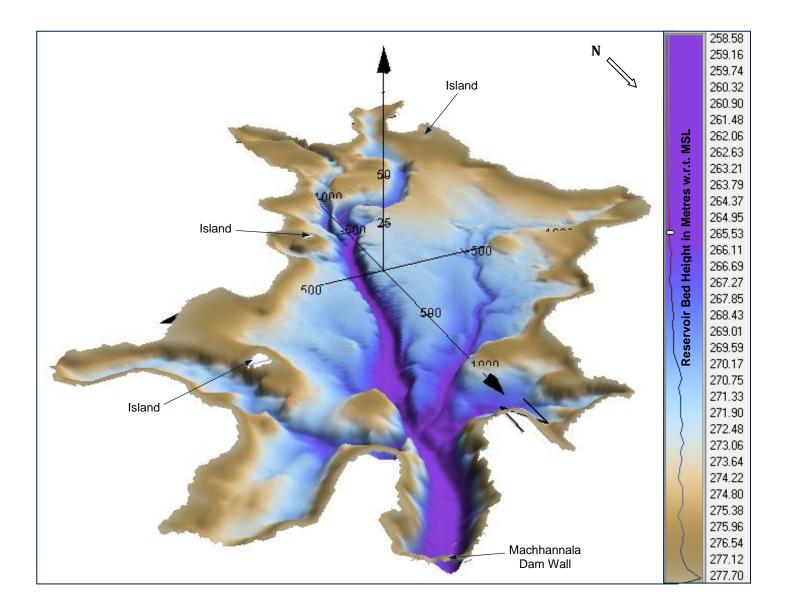


Figure 5.3: 3D view of Machhannala Reservoir

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page 26 of 41

Photograph A: Rocky Island in Northern part of the Machhannala Reservoir (415083 mE, 2549897 mN)

Photograph C: Southernmost approachable part of the Machhannala Reservoir (413663 mE, 2547271 mN) with partially submerged section of road and shallow water depth.

Photograph B: North-western most approachable part of the Machhannala Reservoir (414026 mE, 2550161 mN) with shallow water depth

Photograph D: Western most approachable part of Machhannala Reservoir (412936 mE, 2548668 mN) with shallow water depth.

Figure 5.4: Photographs A, B, C and D showing rock exposures and shallow depths in the northern, north-western, southern and western areas within Machhannala Reservoir respectively

5.2 Elevation Area Capacity Curve (2021)

The area and capacity of the Machhannala reservoir was tabulated against the respective increasing elevation starting from lowest bed elevation (i.e., 258.60 m) up to FRL (277.64 m) at an increment of 0.1 m as shown in Table 5.1. Area capacity curve for Machhannala reservoir is shown in Figure 5.5.

Table 5.1: Revised Elevation Area Capacity table at every 0.1 m interval starting from lowest bed level to FRL for the Survey Year 2021

1258.600.0000.000Bed level2258.700.0010.000-3258.800.0020.000-4258.900.0040.000-5259.000.0050.001-6259.100.0060.001-7259.200.0080.002-8259.300.0090.003-9259.400.0100.004-10259.500.0110.004-11259.600.0120.006-12259.700.0130.007-13259.800.0150.009-14259.900.0160.010-15260.000.0170.012-16260.100.0240.114-17260.200.0340.022-18260.300.0350.025-19260.400.0310.022-10260.500.0350.025-11260.000.0340.024-12260.700.0350.025-13260.800.0350.025-14259.900.016-15260.000.0340.02216260.100.0340.02417260.200.0350.02518260.300.0350.02529261.000.044-		tion Area Ca	pacity Ta					tion Area Ca		ble (2021):	
No. (m) (km²) (km		1		Conacity		_				Conacity	
1258.600.0000.000Bed level2258.700.0010.0003258.800.0020.0004258.900.0040.0005259.000.0050.0016259.100.0060.0017259.200.0080.0028259.300.0090.0039259.400.0100.00410259.500.0110.00411259.600.0120.00512259.700.0130.00713259.800.0150.00914259.900.0160.01015260.000.0170.01216260.100.016017260.200.0340.0218260.300.0350.0219260.400.0310.0210260.500.0350.0211260.000.0340.0212260.700.0340.0213260.400.0350.0214259.500.01615260.400.0340.0216260.400.0340.0217260.200.0340.0218260.300.0440.03729261.700.041-	No.				Remarks						Remark
3258.800.0020.0004258.900.0040.0005259.000.0050.0016259.100.0060.0017259.200.0080.0028259.300.0090.0039259.400.0100.00410259.500.0110.00511259.600.0120.00612259.700.0130.00713259.800.0150.00914259.900.0160.01015260.000.0170.01216260.100.0200.01417260.200.0240.01618260.300.0240.01619260.400.0310.02210260.500.0350.02519260.400.0310.02210260.500.0350.02512260.700.0410.0313260.600.0350.02514260.300.0240.01615260.000.0350.02516260.100.0340.02917260.200.0440.03718260.300.0550.05721260.600.055	1				Bed level						-
4258.900.0040.0005259.000.0050.0016259.100.0060.0017259.200.0080.0028259.300.0090.0039259.400.0100.00410259.500.0110.00511259.600.0120.00612259.700.0130.00713259.800.0150.00914259.900.0160.01015260.000.0170.01216260.100.0200.01417260.200.0240.01618260.300.0380.02919260.400.0310.02021260.700.0440.03322260.700.0440.03323260.800.0440.03324260.900.0550.05625261.100.0530.05726261.100.0530.05126261.100.0530.05126261.100.0530.05126261.100.0530.05126261.100.0530.05126261.100.0530.05126261.100.053 <t< td=""><td>2</td><td>258.70</td><td>0.001</td><td>0.000</td><td>-</td><td></td><td>35</td><td>262.00</td><td>0.077</td><td>0.110</td><td>-</td></t<>	2	258.70	0.001	0.000	-		35	262.00	0.077	0.110	-
5 259.00 0.005 0.001 6 259.10 0.006 0.001 7 259.20 0.008 0.002 8 259.30 0.009 0.003 9 259.40 0.010 0.004 10 259.50 0.011 0.005 11 259.60 0.012 0.006 12 259.70 0.013 0.007 13 259.80 0.015 0.009 14 259.90 0.016 0.010 15 260.00 0.017 0.012 16 260.10 0.020 0.014 17 260.20 0.033 0.022 18 260.30 0.035 0.025 19 260.40 0.031 0.022 21 260.60 0.038 0.029 <	3	258.80	0.002	0.000	-		36	262.10	0.079	0.118	-
6259.100.0060.0017259.200.0080.0028259.300.0090.0039259.400.0100.00410259.500.0110.00511259.600.0120.00612259.700.0130.00713259.800.0150.00914259.900.0160.01015260.000.0170.01216260.100.0200.01417260.200.0240.01618260.300.0280.01919260.400.0310.02220260.500.0350.02521260.600.0380.02922260.700.0440.03723260.800.0440.03724260.900.0550.05725261.100.0530.05126261.100.0530.05127261.200.0560.05728261.300.0550.05729261.400.0620.06920261.500.0640.72610.0550.057261261.000.0550.05727261.200.2640.52028 <td< td=""><td>4</td><td>258.90</td><td>0.004</td><td>0.000</td><td>-</td><td></td><td>37</td><td>262.20</td><td>0.083</td><td>0.126</td><td>-</td></td<>	4	258.90	0.004	0.000	-		37	262.20	0.083	0.126	-
1259.200.0080.0028259.300.0090.0039259.400.0100.00410259.500.0110.00511259.600.0120.00612259.700.0130.00713259.800.0150.00914259.900.0160.00915260.000.0170.01216260.100.0200.01417260.200.0240.01618260.300.0280.01919260.400.0310.02220260.500.0350.02521260.600.0380.02922260.700.0410.03323260.800.0440.03724260.900.0550.05725261.100.0530.05126261.100.0530.05127261.200.0560.05728261.300.0560.05729261.400.0620.06920261.500.0640.72610.0560.057261261.500.2540.52027261.200.0560.5728261.300.0590.66829261.40 <td>5</td> <td>259.00</td> <td>0.005</td> <td>0.001</td> <td>-</td> <td></td> <td>38</td> <td>262.30</td> <td>0.086</td> <td>0.135</td> <td>-</td>	5	259.00	0.005	0.001	-		38	262.30	0.086	0.135	-
8 259.30 0.009 0.003 - 9 259.40 0.010 0.004 - 10 259.50 0.011 0.005 - 11 259.60 0.012 0.006 - 12 259.70 0.013 0.007 - 13 259.80 0.015 0.009 - 14 259.90 0.016 0.010 - 14 259.90 0.016 0.010 - 15 260.00 0.017 0.012 - 16 260.10 0.020 0.014 - 17 260.20 0.024 0.016 - 18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 21 260.50 0.035 0.025 - 22 260.70 0.41 0.033 - 23 260.60 0.38 0.029 -	6	259.10	0.006	0.001	-		39	262.40	0.091	0.144	-
9259.400.0100.00410259.500.0110.00511259.600.0120.00612259.700.0130.00713259.800.0150.00914259.900.0160.01015260.000.0170.01216260.100.0200.01417260.200.0240.01618260.300.0280.01919260.400.0310.02220260.500.0350.02521260.600.0380.02922260.700.0410.03323260.800.0440.03724260.900.0440.03725261.100.0530.05126261.100.0530.05124260.900.04425261.000.0560.05726261.100.0530.05127261.200.0560.05728261.300.0590.06329261.400.0520.06320261.500.06421260.500.05722261.000.0560.05723261.200.2540.52024262.50<	7	259.20	0.008	0.002	-		40	262.50	0.098	0.153	-
10 259.50 0.011 0.005 - 11 259.60 0.012 0.006 - 12 259.70 0.013 0.007 - 13 259.80 0.015 0.009 - 14 259.90 0.016 0.010 - 15 260.00 0.017 0.012 - 16 260.10 0.020 0.014 - 17 260.20 0.024 0.016 - 18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.60 0.038 0.029 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - </td <td>8</td> <td>259.30</td> <td>0.009</td> <td>0.003</td> <td>-</td> <td></td> <td>41</td> <td>262.60</td> <td>0.105</td> <td>0.163</td> <td>-</td>	8	259.30	0.009	0.003	-		41	262.60	0.105	0.163	-
11 259.60 0.012 0.006 12 259.70 0.013 0.007 - 13 259.80 0.015 0.009 - 14 259.90 0.016 0.010 - 15 260.00 0.017 0.012 - 16 260.10 0.020 0.014 - 17 260.20 0.024 0.016 - 18 260.30 0.028 0.019 - 18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.055 0.046 - <	9	259.40	0.010	0.004	-		42	262.70	0.113	0.174	-
12 259.70 0.013 0.007 - 13 259.80 0.015 0.009 - 14 259.90 0.016 0.010 - 15 260.00 0.017 0.012 - 16 260.10 0.020 0.014 - 17 260.20 0.024 0.016 - 18 260.30 0.028 0.019 - 18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - </td <td>10</td> <td>259.50</td> <td>0.011</td> <td>0.005</td> <td>-</td> <td></td> <td>43</td> <td>262.80</td> <td>0.119</td> <td>0.186</td> <td>-</td>	10	259.50	0.011	0.005	-		43	262.80	0.119	0.186	-
13259.800.0150.009 $-$ 14259.900.0160.010 $-$ 15260.000.0170.012 $-$ 16260.100.0200.014 $-$ 17260.200.0240.016 $-$ 18260.300.0280.019 $-$ 19260.400.0310.022 $-$ 20260.500.0350.025 $-$ 21260.600.0380.029 $-$ 22260.700.0410.031 $-$ 23260.800.0440.037 $-$ 24260.900.041 $-$ 25261.000.0530.051 $-$ 260.0410.033 $-$ 26261.100.0530.051 $-$ 26261.100.0530.051 $-$ 27261.200.0560.057 $-$ 28261.300.0590.063 $-$ 29261.400.0620.069 $-$ 30261.500.0640.075 $-$ 31261.600.0670.082 $-$ 32261.600.0670.082 $-$ 33261.600.0670.082 $-$ 34261.600.0640.075 $-$ 35264.000.2540.520 $-$ 261.600.6640.675 $-$ 261.600.6640.675 $-$ 31261.600.6670.682	11	259.60	0.012	0.006	-		44	262.90	0.125	0.198	-
14259.900.0160.010-15260.000.0170.012-16260.100.0200.014-17260.200.0240.016-18260.300.0280.019-19260.400.0310.022-20260.500.0350.025-21260.600.0380.029-22260.700.0410.033-23260.800.0440.037-24260.900.0440.037-25261.100.0530.051-26261.100.0560.057-26261.100.0560.057-27261.200.0640.075-28261.300.0640.075-29261.400.0670.082-31261.600.0670.082-32261.700.069-33261.700.069-34261.300.067-35261.400.067-36264.800.2700.57237261.600.067-38264.300.2780.59939261.400.067-30261.500.069-31261.600.067-32261.700.069-34261.700.069-	12	259.70	0.013	0.007	-		45	263.00	0.132	0.211	-
15260.000.0170.012-16260.100.0200.014-17260.200.0240.016-18260.300.0280.019-18260.300.0280.019-19260.400.0310.022-20260.500.0350.025-21260.600.0380.029-22260.700.0410.033-23260.800.0440.037-24260.900.0440.037-25261.000.0530.0251-26261.100.0530.051-27261.200.0560.057-28261.300.0590.063-29261.400.0640.075-31261.600.0670.082-32261.700.0690.088-32261.700.0690.088-31261.700.0690.088-32261.700.0690.088-33261.700.0690.088-34261.700.0690.088-35264.800.2700.572-36264.800.2780.599-37261.600.0670.088-38264.800.2780.599-39261.600.6640.665265.	13	259.80	0.015	0.009	-		46	263.10	0.140	0.224	-
16 260.10 0.020 0.014 17 260.20 0.024 0.016 18 260.30 0.028 0.019 19 260.40 0.031 0.022 20 260.50 0.035 0.025 21 260.60 0.038 0.029 22 260.70 0.041 0.033 23 260.80 0.044 0.037 24 260.90 0.047 0.041 25 261.00 0.050 0.046 26 261.10 0.053 0.051 27 261.20 0.056 0.057 28 261.30 0.059 0.063 29 261.40 0.062 0.069 30 261.50 0.064 0.075 31 261.60 0.067 0.082 <t< td=""><td>14</td><td>259.90</td><td>0.016</td><td>0.010</td><td>-</td><td></td><td>47</td><td>263.20</td><td>0.147</td><td>0.239</td><td>-</td></t<>	14	259.90	0.016	0.010	-		47	263.20	0.147	0.239	-
17 260.20 0.024 0.016 - 18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.055 0.057 - 26 261.10 0.053 0.057 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 29 261.40 0.067 0.082 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 - 32 261.70 0.069 0.082 - 65	15	260.00	0.017	0.012	-		48	263.30	0.155	0.254	-
18 260.30 0.028 0.019 - 19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 21 261.60 0.067 - - 29 261.40 0.062 0.069 - 20 261.50 0.064 0.075 - 30 261.50 0.067 0.082 -	16	260.10	0.020	0.014	-		49	263.40	0.163	0.270	-
19 260.40 0.031 0.022 - 20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.062 0.069 - 29 261.40 0.062 0.069 - 30 261.50 0.064 - - 31 261.60 0.067 - - 31 261.60 0.067 0.082 - 32 261.70 0.069 - - 32 261.70 0.069 - - 32 261.70 0.067 0.082 - 32 261.70<	17	260.20	0.024	0.016	-		50	263.50	0.171	0.286	-
20 260.50 0.035 0.025 - 21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.063 - - 29 261.40 0.063 - - 29 261.40 0.062 0.069 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 - 32 261.70 0.069 0.088 - 64 264.90 0.278 0.599 - 65 265.00 0.285 0.628 -	18	260.30	0.028	0.019	-		51	263.60	0.178	0.304	-
21 260.60 0.038 0.029 - 22 260.70 0.041 0.033 - 23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 29 261.50 0.064 0.075 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 - 32 261.70 0.069 0.088 - 32 261.70 0.069 0.088 - 32 261.70 0.069 0.088 -	19	260.40	0.031	0.022	-		52	263.70	0.186	0.322	-
22 260.70 0.041 0.033 23 260.80 0.044 0.037 24 260.90 0.047 0.041 25 261.00 0.050 0.046 26 261.10 0.053 0.051 27 261.20 0.056 0.057 28 261.30 0.059 0.063 29 261.40 0.024 0.237 0.471 20 261.30 0.059 0.057 60 264.30 0.237 0.471 28 261.30 0.059 0.063 61 264.60 0.254 0.495 30 261.50 0.064 0.075 63 264.80 0.270 0.572 31 261.60 0.067 0.082 64 264.90 0.285 0.628 32 261.70 0.069 0.285 0.628 - - </td <td>20</td> <td>260.50</td> <td>0.035</td> <td>0.025</td> <td>-</td> <td></td> <td>53</td> <td>263.80</td> <td>0.193</td> <td>0.341</td> <td>-</td>	20	260.50	0.035	0.025	-		53	263.80	0.193	0.341	-
23 260.80 0.044 0.037 - 24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 30 261.50 0.067 0.082 - 31 261.60 0.067 0.088 - 32 261.70 0.069 0.088 -	21	260.60	0.038	0.029	-		54	263.90	0.200	0.361	-
24 260.90 0.047 0.041 - 25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.088 - 32 261.70 0.069 0.088 -	22	260.70	0.041	0.033	-		55	264.00	0.209	0.381	-
25 261.00 0.050 0.046 - 26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.052 0.059 - 30 261.50 0.067 - 63 264.80 0.270 0.572 - 31 261.60 0.067 - 65 264.90 0.278 0.595 - 32 261.70 0.069 - 65 265.00 0.285 0.628 -	23	260.80	0.044	0.037	-		56	264.10	0.218	0.402	-
26 261.10 0.053 0.051 - 27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 30 261.50 0.067 0.082 - 31 261.60 0.067 0.088 - 65 265.00 0.285 0.628 -	24	260.90	0.047	0.041	-		57	264.20	0.224	0.425	-
27 261.20 0.056 0.057 - 28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 -	25	261.00	0.050	0.046	-		58	264.30	0.230	0.447	-
28 261.30 0.059 0.063 - 29 261.40 0.062 0.069 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 -	26	261.10	0.053	0.051	-		59	264.40	0.237	0.471	-
29 261.40 0.062 0.069 - 30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 -	27	261.20	0.056	0.057	-		60	264.50	0.245	0.495	-
30 261.50 0.064 0.075 - 31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 -	28	261.30	0.059	0.063	-		61	264.60	0.254	0.520	-
31 261.60 0.067 0.082 - 32 261.70 0.069 0.088 - 64 264.90 0.278 0.599 - 65 265.00 0.285 0.628 -	29	261.40	0.062	0.069	-		62	264.70	0.262	0.545	-
32 261.70 0.069 0.088 - 65 265.00 0.285 0.628 -	30	261.50	0.064	0.075	-		63	264.80	0.270	0.572	-
	31	261.60	0.067	0.082	-		64	264.90	0.278	0.599	-
33 261.80 0.072 0.095 - 66 265.10 0.293 0.656 -	32	261.70	0.069	0.088	-		65	265.00	0.285	0.628	-
	33	261.80	0.072	0.095	-		66	265.10	0.293	0.656	-

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **28** of 41

UGRO

Remarks

_

_

-

_

-

-

-

_

_

_

-

-

_

-

-

-

_

_

_

-

-

MDDL

_

_

_

-

_

_

_

-

_

-

-

-

-

-

_

_

_

-

-UGRO

							e	(,
	tion Area Ca hannala Dar		ble (2021):			tion Area Ca hannala Dar		ble (2021):
Sr.	Elevation	Area	Capacity		Sr.	Elevation	Area	Capacity
No.	[m]	[km²]	[Mm ³]	Remarks	No.	[m]	[km ²]	[Mm ³]
67	265.20	0.301	0.686	-	108	269.30	0.995	3.033
68	265.30	0.309	0.717	-	109	269.40	1.026	3.134
69	265.40	0.317	0.748	-	110	269.50	1.059	3.238
70	265.50	0.325	0.780	-	111	269.60	1.092	3.346
71	265.60	0.333	0.813	-	112	269.70	1.128	3.457
72	265.70	0.342	0.847	-	113	269.80	1.165	3.571
73	265.80	0.350	0.881	-	114	269.90	1.204	3.690
74	265.90	0.360	0.917	-	115	270.00	1.247	3.812
75	266.00	0.369	0.953	-	116	270.10	1.307	3.940
76	266.10	0.379	0.991	-	117	270.20	1.362	4.074
77	266.20	0.389	1.029	-	118	270.30	1.419	4.213
78	266.30	0.398	1.068	-	119	270.40	1.479	4.357
79	266.40	0.410	1.109	-	120	270.50	1.546	4.509
80	266.50	0.422	1.150	-	121	270.60	1.608	4.666
81	266.60	0.435	1.193	-	122	270.70	1.674	4.830
82	266.70	0.447	1.237	-	123	270.80	1.746	5.001
83	266.80	0.460	1.283	-	124	270.90	1.821	5.180
84	266.90	0.475	1.329	-	125	271.00	1.882	5.365
85	267.00	0.491	1.378	-	126	271.10	1.944	5.556
86	267.10	0.506	1.427	-	127	271.20	2.005	5.754
87	267.20	0.522	1.479	-	128	271.30	2.071	5.957
88	267.30	0.538	1.532	-	129	271.31	2.090	6.020
89	267.40	0.554	1.586	-	130	271.40	2.141	6.168
90	267.50	0.570	1.643	-	131	271.50	2.222	6.386
91	267.60	0.588	1.700	-	132	271.60	2.304	6.612
92	267.70	0.608	1.760	-	133	271.70	2.378	6.846
93	267.80	0.629	1.822	-	134	271.80	2.454	7.088
94	267.90	0.650	1.886	-	135	271.90	2.526	7.337
95	268.00	0.673	1.952	-	136	272.00	2.592	7.593
96	268.10	0.696	2.021	-	137	272.10	2.657	7.856
97	268.20	0.719	2.091	-	138	272.20	2.723	8.124
98	268.30	0.743	2.164	-	139	272.30	2.792	8.400
99	268.40	0.767	2.240	-	140	272.40	2.864	8.683
100	268.50	0.793	2.318	-	141	272.50	2.939	8.973
101	268.60	0.820	2.399	-	142	272.60	3.018	9.271
102	268.70	0.846	2.482	-	143	272.70	3.096	9.577
103	268.80	0.870	2.568	-	144	272.80	3.172	9.890
104	268.90	0.893	2.656	-	145	272.90	3.254	10.211
105	269.00	0.917	2.746	-	146	273.00	3.336	10.541
106	269.10	0.942	2.839	-	147	273.10	3.411	10.878
107	269.20	0.968	2.935	-	148	273.20	3.477	11.223

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page 29 of 41

Elevation Area Capacity Table (2021): Machhannala Dam							
Sr.	Elevation	Area	Capacity	Remarks			
No. 149	[m] 273.30	[km ²] 3.539	[Mm ³] 11.573	_			
150	273.40	3.590	11.930	_			
151	273.50	3.642	12.291				
152	273.60	3.694	12.658	_			
152	273.70	3.751	13.030				
155	273.80	3.808	13.408				
154	273.80	3.867	13.792	-			
155				-			
	274.00	3.931	14.182	-			
157	274.10	3.997	14.578	-			
158	274.20	4.066	14.982	-			
159	274.30	4.130	15.391	-			
160	274.40	4.199	15.808	-			
161	274.50	4.274	16.231	-			
162	274.60	4.345	16.662	-			
163	274.70	4.417	17.100	-			
164	274.80	4.490	17.546	-			
165	274.90	4.562	17.998	-			
166	275.00	4.638	18.458	-			
167	275.10	4.709	18.926	-			
168	275.20	4.779	19.400	-			
169	275.30	4.849	19.882	-			
170	275.40	4.917	20.370	-			
171	275.50	4.983	20.865	-			
172	275.60	5.049	21.366	-			
173	275.70	5.112	21.874	-			
174	275.80	5.175	22.389	-			
175	275.90	5.240	22.910	-			
176	276.00	5.311	23.437	-			
177	276.10	5.407	23.973	-			
178	276.20	5.483	24.517	-			
179	276.30	5.553	25.069	-			
180	276.40	5.622	25.628	-			
181	276.50	5.691	26.194	-			
182	276.60	5.760	26.766	-			
183	276.70	5.828	27.346	-			
184	276.80	5.897	27.932	-			
185	276.90	5.960	28.525	-			
186	277.00	6.024	29.124				
187	277.10	6.087	29.729	_			
188	277.20	6.150	30.341	_			
189	277.30	6.215	30.959				

Elevation Area Capacity Table (2021): Machhannala Dam							
Sr. No.	Elevation [m]	Area [km²]	Capacity [Mm ³]	Remarks			
190	277.40	6.283	31.584	-			
191	277.50	6.355	32.216	-			
192	277.60	6.429	32.856	-			
193	277.64	6.460	33.110	FRL			
194	277.70	6.502	33.502	-			

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **30** of 41

Comparison of Elevation Capacity Details 5.3

Comparison of the elevation capacity details for the year 2021 with the capacity for the previous years 1982 and 1999 are shown in Table 5.2. In addition, the comparison plots of capacity curve for the year 2021, 1999, and 1982 are shown in Figure 5.5.

In general, the 2021 survey results indicate that there is loss in gross storage capacity w.r.t. 1982 project capacity. However, w.r.t. 1999 results, the 2021 survey results indicate increase in gross storage capacity between FRL and 271.64 m. Below 217.64 m there is decrease in the gross storage capacity.

	Elevation	Original 1982	Survey in year 1999	Survey in year 2021		
Sr. No	(wrt MSL) [m]	Gross Capacity [Mm ³]	Gross Capacity [Mm³]	Gross Capacity [Mm³]	Area [km²]	
1	277.64	37.91	27.12	33.10	6.46	
2	276.64	30.38	22.25	26.99	5.79	
3	275.64	23.94	17.85	21.56	5.07	
4	274.64	19.46	14.01	16.84	4.37	
5	273.64	14.99	10.81	12.80	3.72	
6	272.64	11.41	8.35	9.42	3.05	
7	271.64	9.42	6.45	6.74	2.33	
8	270.64	7.44	4.85	4.77	1.63	
9	269.64	5.88	3.62	3.40	1.11	
10	268.64	5.07	2.69	2.44	0.83	
11	267.64	4.27	1.94	1.73	0.60	
12	266.64	3.39	1.38	1.21	0.44	
13	265.64	2.41	0.99	0.83	0.34	
14	264.64	1.42	0.68	0.53	0.26	
15	263.64	0.69	0.44	0.31	0.18	
16	262.64	0.42	0.26	0.17	0.11	
17	261.64	0.23	0.15	0.08	0.07	
18	260.64	0.17	0.08	0.03	0.04	
19	259.64	0.11	0.033	0.005	0.013	
20	258.64	0.05	0.0028	0.0001	0.0003	

Table 5.2: Comparison of Elevation Capacity details of 2021, 1999 and 1982 data

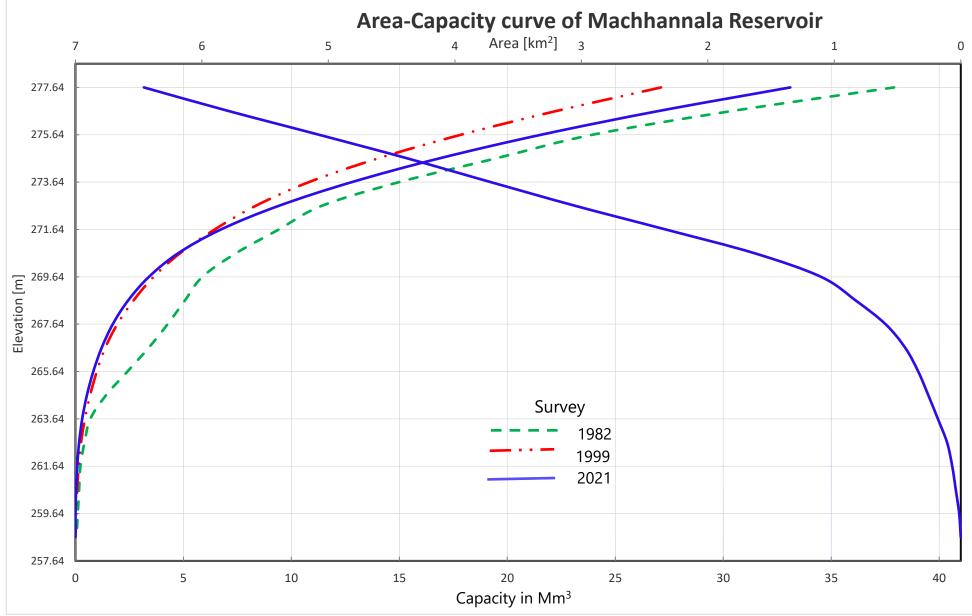


Figure 5.5: Area capacity curve for 2021 survey compared with elevation capacity details of 1982 and 1999 for Machhannala Reservoir

5.4 Sedimentation in Reservoir

The present survey of Machhannala reservoir was carried out between February -March 2021 and June 2021. Previous survey was carried out in the year 1999. The catchment area considered for sedimentation studies is 244.91 km². In the present study, the age of the reservoir is considered as 39 years (1982 – 2021). As per 2020-2021 survey, the total area of reservoir at FRL 277.64 m is 6.46 km² and the corresponding gross storage capacity is 33.11 Mm³. Table 5.3 details the gross capacity loss, rate of sedimentation and annual % loss in gross storage capacity w.r.t. original project capacity (1982).

Year	1982	1999	2021	2021		
Storage Capacity in Mm ³						
Dead	8.75	5.92	6.02	6.02		
Live	29.16	21.20	27.09	27.09		
Gross	37.91	27.12	33.11	33.11		
Loss of Storage Capacity in Mm ³		(wrt 1982)	(wrt 1999)	(wrt 1982)		
Dead	NA	2.83	-0.10	2.73		
Live	NA	7.96	-5.89	2.07		
Gross	NA	10.79	-5.99	4.80		
Sedimentation Rate in Ham/100 km²/Year		(wrt 1982)	(wrt 1999)	(wrt 1982)		
Dead	NA	6.80	-0.19	2.86		
Live	NA	19.12	-10.93	2.17		
Gross	3.35	25.92	-11.12	5.03		
Annual % loss		(wrt 1982)	(wrt 1999)	(wrt 1982)		
Dead		0.439	-0.017	0.18		
Live		1.235	-0.987	0.14		
Gross		1.674	-1.004	0.32		
Class of reservoir as per IS - 12182 (1987)	As per design	Serious	Desiltation	Significant		
Volume of sediment (w.r.t. 1982) deposited on bed in 2021= Loss of storage capacity= 4.80 Mm ³						
Note: Sign Convention: -ve sign shows desiltation and +ve sign shows siltation						

Table 5.3: 5	Sedimentation	in Machhannala	Reservoir
--------------	---------------	----------------	-----------

Table 5.4 gives the results of the Trap efficiency and Sedimentation Index calculated for Machhannala reservoir as per the methodology given in IS 12182-1987.

Table 5.4: Trap Efficiency and Sedimentation Index for Machhannala Reservoir

Trap Efficiency	Sedimentation Index
95%	7.38 x 10 ¹⁰ (sec ² /m)

In Table 5.3, the Project data of 1982 has been compared with 2021 survey results to understand the sedimentation in Machhannala reservoir. It may be observed that there is a reduction in the storage capacity of the reservoir due to siltation.

In comparison with 1999 survey, the present survey results indicate desiltation process in the reservoir. As per 1999 survey results, serious siltation in the reservoir was reported when it was compared with 1982 (original capacity) survey. The reason behind the present survey results showing siltation w.r.t. 1982 Original capacity could be due to change of upstream catchment characteristics. Also, there could be some anthropogenic activities in the catchment area which might result in siltation in the reservoir. The classification of reservoir from "Serious" category reported in the year 1999 to "Significant" category in the year 2021 (w.r.t. 1982 Project data) indicate decrease in annual % loss in gross capacity.

No.	Year of	Source	Period	Reservoir Capacity (Mm³)		Loss of Gross Capa (Mm ³) Since		acity	Observed Rate of Sedimentation Since 1982 survey	
Sr. N	Survey	of Data	(years)	Gross	Live	Dead	1982 survey	% Cumulative	Remark	(Ha m / 100 Sq km/Yr)
1	1982 (Original)	St Govt (HS)	-	37.91	29.16	8.75				
2	1999	St Govt (HS)	17	27.12	21.2	5.92	10.79	28.46	Siltation	25.92
3	2021	Present survey	39	33.11	27.09	6.02	4.80	12.66	Desiltation	5.03

Table 5.5: Sedimentation Volumes from Surveys of Previous Year

- As per 2021 survey results, the volume of sediment deposited or the loss in gross storage capacity w.r.t. 1982 Project data is 4.80 Mm³.
- The rate of siltation in Machhannala reservoir is 0.123 Mm³/year.
- The average rate of siltation in the Machhannala reservoir during the 39 years life span (1982 2021), works out to 5.03 Ha m/100 sq km/year.
- The annual % loss in Machhannala reservoir during the 39 years life span is 0.32 % and hence, the reservoir is classified as "Significant" category as per IS 12182 (1987).
- •—Trap Efficiency and sedimentation Index calculated for Machhannala reservoir as per methodology give in IS 12182-1987 is 95% and 7.38 x 1010 (sec2/m) respectively.

Table 5.6 gives the gross, live and dead storage capacity from bed level to FRL at 0.1 m interval.

Table 5.6: Gross, Live and Dead storage capacity from bed level to FRL at 0.1 m interval

	-	ead storage	e capacity fro	om bed level	
Sr.	Elevation	Gross Capacity	Live	Dead Capacity	Remarks
No.	[m]	[Mm ³]	[Mm ³]	[Mm ³]	Remarks
1	258.60	0.000		0.000	Bed level
2	258.70	0.000		0.000	
3	258.80	0.000		0.000	
4	258.90	0.000		0.000	
5	259.00	0.001		0.001	
6	259.10	0.001		0.001	
7	259.20	0.002		0.002	
8	259.30	0.003		0.003	
9	259.40	0.004		0.004	
10	259.50	0.005		0.005	
11	259.60	0.006		0.006	
12	259.70	0.007		0.007	
13	259.80	0.009		0.009	
14	259.90	0.010		0.010	
15	260.00	0.012		0.012	
16	260.10	0.014		0.014	
17	260.20	0.016		0.016	
18	260.30	0.019		0.019	
19	260.40	0.022		0.022	
20	260.50	0.025		0.025	
21	260.60	0.029		0.029	
22	260.70	0.033		0.033	
23	260.80	0.037		0.037	
24	260.90	0.041		0.041	
25	261.00	0.046		0.046	
26	261.10	0.051		0.051	
27	261.20	0.057		0.057	
28	261.30	0.063		0.063	
29	261.40	0.069		0.069	
30	261.50	0.075		0.075	
31	261.60	0.082		0.082	
32	261.70	0.088		0.088	
33	261.80	0.095		0.095	
34	261.90	0.103		0.103	
35	262.00	0.110		0.110	
36	262.10	0.118		0.118	
37	262.20	0.126		0.126	
38	262.30	0.135		0.135	
39	262.40	0.144		0.144	

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **35** of 41

	, Live and D interval - M			om bed level	to FRL at
Sr. No.	Elevation [m]	Gross Capacity [Mm³]	Live Capacity [Mm ³]	Dead Capacity [Mm³]	Remarks
40	262.50	0.153		0.153	
41	262.60	0.163		0.163	
42	262.70	0.174		0.174	
43	262.80	0.186		0.186	
44	262.90	0.198		0.198	
45	263.00	0.211		0.211	
46	263.10	0.224		0.224	
47	263.20	0.239		0.239	
48	263.30	0.254		0.254	
49	263.40	0.270		0.270	
50	263.50	0.286		0.286	
51	263.60	0.304		0.304	
52	263.70	0.322		0.322	
53	263.80	0.341		0.341	
54	263.90	0.361		0.361	
55	264.00	0.381		0.381	
56	264.10	0.402		0.402	
57	264.20	0.425		0.425	
58	264.30	0.447		0.447	
59	264.40	0.471		0.471	
60	264.50	0.495		0.495	
61	264.60	0.520		0.520	
62	264.70	0.545		0.545	
63	264.80	0.572		0.572	
64	264.90	0.599		0.599	
65	265.00	0.628		0.628	
66	265.10	0.656		0.656	
67		0.686		0.686	
68	265.20	0.000		0.000	
	265.30				
69	265.40	0.748		0.748	
70	265.50	0.780		0.780	
71	265.60	0.813		0.813	
72	265.70	0.847		0.847	
73	265.80	0.881		0.881	
74	265.90	0.917		0.917	
75	266.00	0.953		0.953	
76	266.10	0.991		0.991	
77	266.20	1.029		1.029	
78	266.30	1.068		1.068	
79	266.40	1.109		1.109	

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **36** of 41

	, Live and D interval - M			om bed level	to FRL at
Sr. No.	Elevation [m]	Gross Capacity [Mm³]	Live Capacity [Mm³]	Dead Capacity [Mm³]	Remarks
80	266.50	1.150		1.150	
81	266.60	1.193		1.193	
82	266.70	1.237		1.237	
83	266.80	1.283		1.283	
84	266.90	1.329		1.329	
85	267.00	1.378		1.378	
86	267.10	1.427		1.427	
87	267.20	1.479		1.479	
88	267.30	1.532		1.532	
89	267.40	1.586		1.586	
90	267.50	1.643		1.643	
91	267.60	1.700		1.700	
92	267.70	1.760		1.760	
93	267.80	1.822		1.822	
94	267.90	1.886		1.886	
95	268.00	1.952		1.952	
96	268.10	2.021		2.021	
97	268.20	2.091		2.091	
98	268.30	2.164		2.164	
99	268.40	2.240		2.240	
100	268.50	2.318		2.318	
101	268.60	2.399		2.399	
102	268.70	2.482		2.482	
103	268.80	2.568		2.568	
104	268.90	2.656		2.656	
105	269.00	2.746		2.746	
106	269.10	2.839		2.839	
107	269.20	2.935		2.935	
108	269.30	3.033		3.033	
109	269.40	3.134		3.134	
110	269.50	3.238		3.238	
111	269.60	3.346		3.346	
112	269.70	3.457		3.457	
113	269.80	3.571		3.571	
114	269.90	3.690		3.690	
115	270.00	3.812		3.812	
116	270.00	3.940		3.940	
117	270.10	4.074		4.074	
118	270.20	4.213		4.213	
	270.30				
119	270.40	4.357		4.357	

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **37** of 41

	, Live and D interval - M			om bed level	to FRL at
Sr. No.	Elevation [m]	Gross Capacity [Mm ³]	Live Capacity [Mm ³]	Dead Capacity [Mm ³]	Remarks
120	270.50	4.509		4.509	
121	270.60	4.666		4.666	
122	270.70	4.830		4.830	
123	270.80	5.001		5.001	
124	270.90	5.180		5.180	
125	271.00	5.365		5.365	
126	271.10	5.556		5.556	
127	271.20	5.754		5.754	
128	271.30	5.957		5.957	
129	271.31	6.020	0.000	6.020	MDDL
130	271.40	6.168	0.148	6.020	
131	271.50	6.386	0.366	6.020	
132	271.60	6.612	0.592	6.020	
133	271.70	6.846	0.826	6.020	
134	271.80	7.088	1.068	6.020	
135	271.90	7.337	1.317	6.020	
136	272.00	7.593	1.573	6.020	
137	272.10	7.856	1.836	6.020	
138	272.20	8.124	2.104	6.020	
139	272.30	8.400	2.380	6.020	
140	272.40	8.683	2.663	6.020	
141	272.50	8.973	2.953	6.020	
142	272.60	9.271	3.251	6.020	
143	272.70	9.577	3.557	6.020	
144	272.80	9.890	3.870	6.020	
145	272.90	10.211	4.191	6.020	
146	273.00	10.541	4.521	6.020	
147	273.10	10.878	4.858	6.020	
148	273.20	11.223	5.203	6.020	
149	273.30	11.573	5.553	6.020	
150	273.40	11.930	5.910	6.020	
151	273.50	12.291	6.271	6.020	
152	273.60	12.658	6.638	6.020	
153	273.70	13.030	7.010	6.020	
154	273.80	13.408	7.388	6.020	
155	273.90	13.792	7.772	6.020	
156	274.00	14.182	8.162	6.020	
157	274.10	14.578	8.558	6.020	
158	274.20	14.982	8.962	6.020	
159	274.30	15.391	9.371	6.020	

JHYD20-174630-Volume 4-Machhannala Reservoir/R2 [02] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project Page **38** of 41

	, Live and D interval - M			om bed level	to FRL at
Sr.	Elevation	Gross	Live	Dead	
No.	[m]	Capacity	Capacity	Capacity	Remarks
	l	[Mm ³]	[Mm ³]	[Mm ³]	
160	274.40	15.808	9.788	6.020	
161	274.50	16.231	10.211	6.020	
162	274.60	16.662	10.642	6.020	
163	274.70	17.100	11.080	6.020	
164	274.80	17.546	11.526	6.020	
165	274.90	17.998	11.978	6.020	
166	275.00	18.458	12.438	6.020	
167	275.10	18.926	12.906	6.020	
168	275.20	19.400	13.380	6.020	
169	275.30	19.882	13.862	6.020	
170	275.40	20.370	14.350	6.020	
171	275.50	20.865	14.845	6.020	
172	275.60	21.366	15.346	6.020	
173	275.70	21.874	15.854	6.020	
174	275.80	22.389	16.369	6.020	
175	275.90	22.910	16.890	6.020	
176	276.00	23.437	17.417	6.020	
177	276.10	23.973	17.953	6.020	
178	276.20	24.517	18.497	6.020	
179	276.30	25.069	19.049	6.020	
180	276.40	25.628	19.608	6.020	
181	276.50	26.194	20.174	6.020	
182	276.60	26.766	20.746	6.020	
183	276.70	27.346	21.326	6.020	
184	276.80	27.932	21.912	6.020	
185	276.90	28.525	22.505	6.020	
186	277.00	29.124	23.104	6.020	
187	277.10	29.729	23.709	6.020	
188	277.20	30.341	24.321	6.020	
189	277.30	30.959	24.939	6.020	
190	277.40	31.584	25.564	6.020	
191	277.50	32.216	26.196	6.020	
192	277.60	32.856	26.836	6.020	
193	277.64	33.110	27.090	6.020	FRL

6. Conclusions

- The reservoir topography was uneven, with reservoir bed level ranging from 258.60 m to 277.64 m w.r.t. MSL. The lowest reservoir bed level 256.8 m was found near the upstream face of the dam boundary and it becomes shallower as we go further upstream from the dam face. Also, the reservoir bed tends to get shallower as we go further in east, west and south directions away from the dam wall within the survey area.
- Current survey results indicate that the loss of gross storage capacity (w.r.t. 1982 project data) due to siltation in Machhannala reservoir is 4.80 Mm³. The probable reasons for the decrease of gross storage capacity could be change in hydrodynamics due to change of upstream discharges as sediment carrying capacity of the river and its tributaries. Moreover, the cause of changes could be anthropogenic intervention towards siltation of the reservoir.
- In comparison with 1982 survey results, 2021 results indicate decrease in storage capacity due to siltation. The annual % loss in gross storage capacity is 0.32 % and hence, the reservoir is classified as "Significant" category as per IS 12182 (1987).
- The sedimentation volumes, sedimentation rates, loss of storage capacity, trap efficiency, sedimentation index have been reported in the study. Moreover, the tables for gross, live and dead storage capacity of reservoir at every 0.1 m interval from lowest bed level to FRL have been provided.

7. References

- Bengtsson, L., Herschy, R. W., & Fairbridge, R. W. (2012). Encyclopedia of Lakes and Reservoirs (Encyclopedia of Earth Sciences Series). Springer.
- Bureau of Indian Standards. (1987). *Guidelines for determination of effects of sedimentation in planning and performance of reservoirs* (IS 12182 : 1987). Bureau of Indian Standards.
- Bureau of Indian Standards. (1999). Fixing the capacities of reservoirs-Methods. Part1-General Requirements IS 5477 (Part 1): 1999. Bureau of Indian Standards.
- Guruji, A. L., Shrimali, N. J., & Patel, A. S. (2008, February). Groundwater Fluctuations in Machhan River Basin. FACE 08, 2nd National Conference on Focusing on Advances in Civil Engineering, Kollam, Kerala, India.
- India-WRIS. (2014). *Mahi Basin* (Version 2.0). Ministry of Water Resources, Government of India.
- Merh, S. S. & Geological Society of India. (1995). *Geology of Gujarat*. Geological Society of India.
- Nayak, K. M. (2014). Groundwater Brochure Dahod District. Government of India, Ministry of Water Resources Central Ground Water Board, West Central Region, Ahmedabad.
- Schellenberg, G., Donnelly, R. C., Holder, C., & Ahsan, R. (2017). Dealing With Sediment -Effects on Dams and Hydropower Generation. *HRW Hydro Review Worldwide*, *25*(1), 6–13.
- Schleiss, A. J., Franca, M. J., Juez, C., & de Cesare, G. (2016). Reservoir sedimentation. *Journal of Hydraulic Research*, *54*(6), 595–614. https://doi.org/10.1080/00221686.2016.1225320
- Shiferaw, M., & Abebe, R. (2020). Examining Reservoir Sedimentation and Estimating Dam Stockpiling Limit Utilizing Bathymetry Overview: A Contextual Investigation of Abrajit Dam, North Gojjam Sub-basin, Blue Nile basin, Ethiopia. *Journal of the Indian Society of Remote Sensing*, 48(9), 1313–1323. https://doi.org/10.1007/s12524-020-01159-8
- Shrimali, N. J. (2017). Study and Analysis of Groundwater Level Variation in Catchment of Bambela Check Dam on River Machhan. *IJIRST –International Journal for Innovative Research in Science & Technology*, 4(1), 8–12.

Appendix A

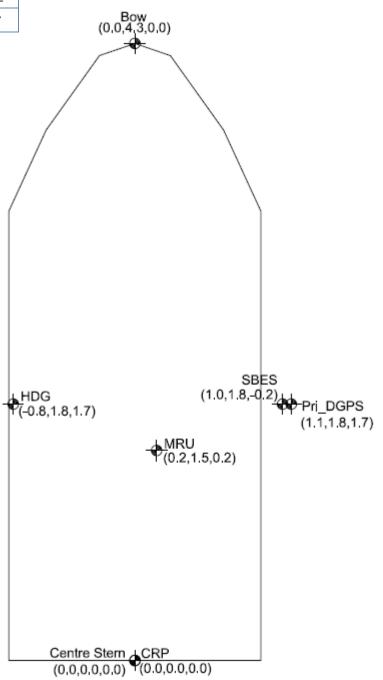
Diary of Events

(01 page)

	Diary of Events (Bathymetry and Topography Survey)				
Date Events					
Bathymetry Survey					
16 February 2021	Survey personnel with survey boat 'Polaris' reached Machhannala reservoir.				
17 February 2021	Polaris deployed on Machhannala reservoir and mobilization completed				
18 February 2021	Calibration/verification started.				
19 February 2021	Calibration/verification in progress				
20 February 2021	Calibration/verification completed, and survey started.				
21 - 28 February 2021	Survey continued.				
01 March 2021	Survey completed and demobilization started.				
02 March 2021 Demobilization completed.					
Topography Survey					
21 June 2021	Topography survey team with equipment reached Machhannala Dam. Mobilisation and calibration commenced and completed.				
22 June 2021	Topography survey commenced				
23 June 2021	Topography survey continued.				
24 June 2021	Topography survey completed.				

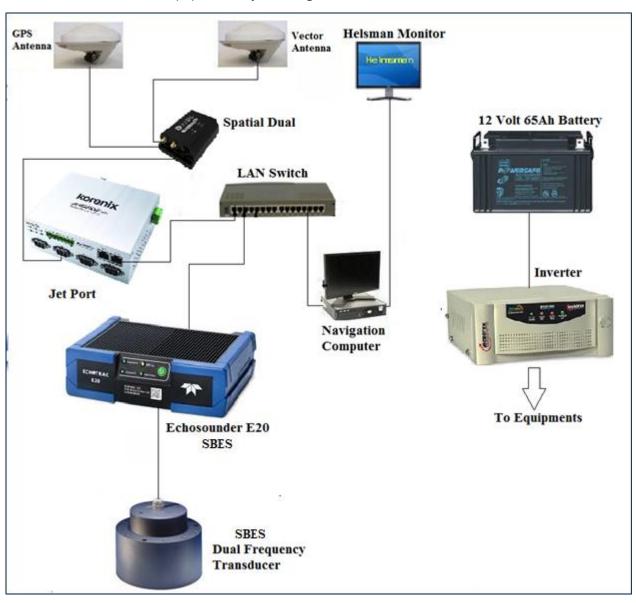
Appendix B

Survey Vessel Sensor Offsets


(01 Page)

Sensor Offsets: Polaris					
Starfix.Suite Name	X [m]	Y [m]	Z [m]		
CRP	0.00	0.00	0.00		
Centre Stern	0.00	0.00	0.00		
Bow	0.00	4.26	0.00		
Pri_DGPS	1.08	1.82	1.77		
HDG	-0.84	1.82	1.77		
SBES	1.02	1.77	-0.22		
MRU	0.2	1.45	0.17		

Survey Vessel 'Polaris' Sensor Offset Diagram


Appendix C

Equipment Layout Diagram

(01 Page)

Equipment Layout Diagram onboard Polaris

Appendix D

Results of Field Calibrations /

Verifications

(18 pages)

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of Machhannala Dam BM (FSL-TBM)

Job No. :	J-HYD-20-174630	Job Name:	Bathymetric Survey
Station Name:	Machhannala Dam	Location:	Gujarat, West Coast of India
Party Chief :	Arpit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: (Date & Time)	19-02-2021 & 16:16hrs	End of Observation: (Date & Time)	19-02-2021 & 16:46hrs

1. Station Name: FSL-TBM.

Positioning System Verification Results						
	World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North					
Sensor	SensorSerial No.Starfix.Seis NameMethodFile TypeMean DifferencesSD					
TRIMBLE BX992 RECEIVER	025- 000096 01	PRI_DGPS	Mean position report	FBF	NA	0.01

A= FSL-TBM Height from MSL 277.860m

B= Antenna Height from BM 0.720m (Measured by Tape)

Ellipsoidal height of Antenna= 208.870m

Ellipsoidal Height of BM 208.870m-0.72m=208.15m

C is the center point of BM.

Position Of Antenna:-

Latitude: 23°03'42.68277"N, Longitude: 74°10'18.53477"E

Easting: 4,15,163.020m E Northing: 25,50,607.461m N

Prepared By: Arpit Bose.

Project ID	J-HYD-20-174630_clone				
Location	Central Gujarat				
Client	Narmada Water Resources Govt. of Gujarat	Vessel	Tripod		
Comment					

Session Name: FSL-TBM-v3

Start Time: 19 Feb 2021, 16:16:03+05:30 End Time: 19 Feb 2021, 16:46:03+05:30

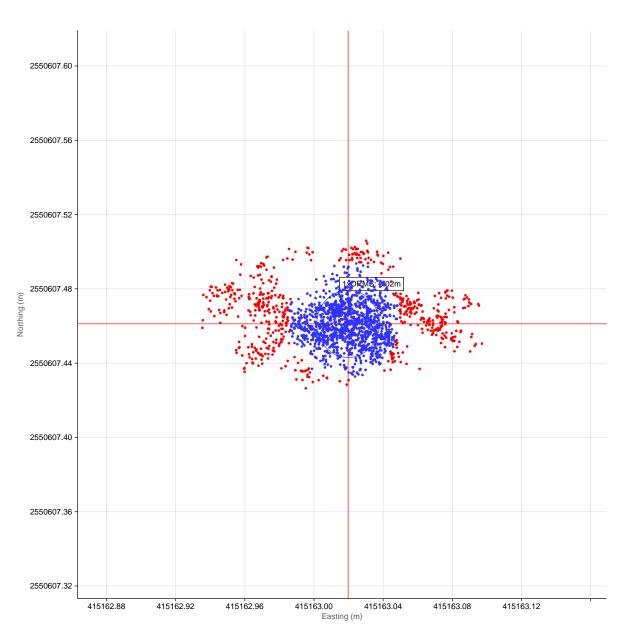
Records Used: 1230 of 1789

Session Length: 00:29:59

	Mean Position for Tripod CentreOfGravity					
	WGS 84 / UTM zone 43N	WGS 84(2D)				
Latitude	23°03'42.68277"N	23°03'42.68277"N				
Longitude	74°10'18.53477"E	74°10'18.53477"E				
Height	208.870m Ell.	208.870m Ell.				
Easting	4,15,163.020m E (SD: ±0.01m)					
Northing	25,50,607.461m N (SD: ±0.01m)					
Height	264.972m Ort. (SD: ±0.05m Ort.)					

Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

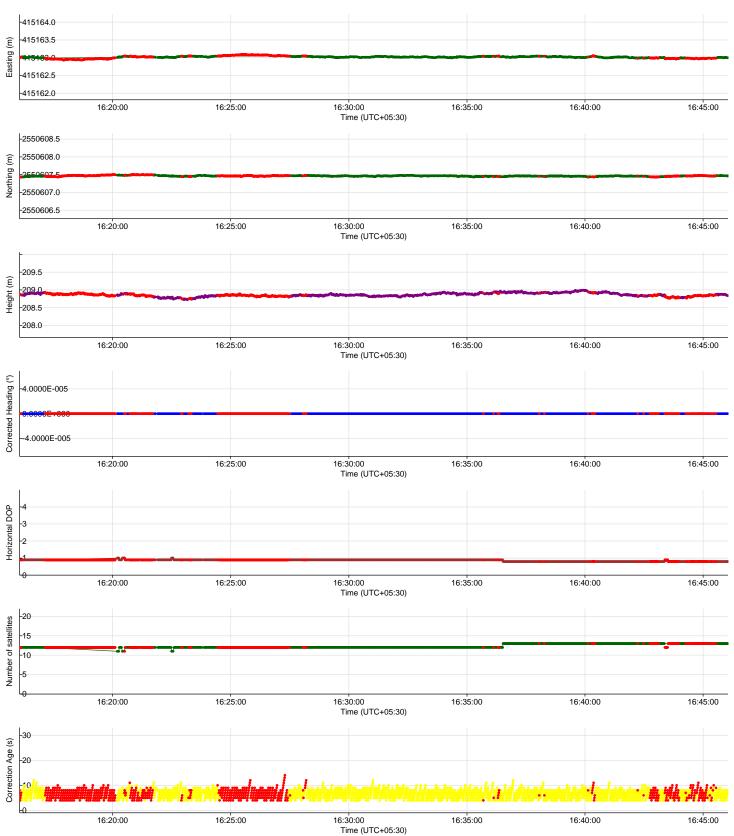
Section Officer End Client Representative Narmada Water Resources Govt. of Gujarat



Geodetic Parameters

Name : WGS 84 / UTM zone 43N				
EPSG Code	EPSG::32643	EPSG::32643		
Local Geodetic Datum Parameters				
Datum	World Geodetic System 1984	World Geodetic System 1984 EPSG::6326		
Ellipsoid	WGS 84			
Semi major axis	a = 63,78,137.000 m			
Inverse flattening	1/f = 298.257223563	1/f = 298.257223563		
Local Projection Parameters				
Map Projection	Transverse Mercator			
Grid System	UTM zone 43N	UTM zone 43N EPSG::16043		
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N		
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E		
Scale Factor on Central Meridian	0.9996			
False Easting	500 000 m			
False Northing	0 m	0 m		

Scatter Plot



Mean Position

	Easting	Northing
Tripod	4,15,163.020m E	25,50,607.461m N

Time Series Plots for Tripod

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of Machhannala Dam BM (FSL-TBM)

Job No. :	J-HYD-20-174630	Job Name:	Bathymetric Survey
Station Name:	Machhannala Dam	Location:	Gujarat, West Coast of India
Party Chief :	Arpit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: (Date & Time)	19-02-2021 & 12:27hrs	End of Observation: (Date & Time)	19-02-2021 & 12:57hrs

1. Station Name: FSL-TBM.

Positioning System Verification Results						
World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North					า	
Sensor	Serial No.	Starfix.Seis Name	Method	File Type	Mean Differences	SD
TRIMBLE BX992 RECEIVER	025- 272968	PRI_DGPS	Mean position report	FBF	NA	0.01

A= FSL-TBM Height from MSL 277.860m

B= Antenna Height from BM 0.720m (Measured by Tape)

Ellipsoidal height of Antenna= 209.018m

Ellipsoidal Height of BM 209.018m-0.698m=208.320m

C is the center point of BM.

Position Of Antenna:-

Latitude: 23°03′42.68240″N Longitude: 074°10′18.53341″E A

Easting: 4,15,162.981m E Northing: 25,50,607.450m N

Prepared By: Arpit Bose.

Project ID	Gujarat Dam		
Location	GUJARAT		
Client	Govt. of Gujarat	Vessel	Tripod
Comment			

Session Name: Spatial Dual -FSL-v1

Records Used: 1131 of 1799

Start Time: 20 Feb 2021, 12:27:57+05:30 End Time: 20 Feb 2021, 12:57:56+05:30

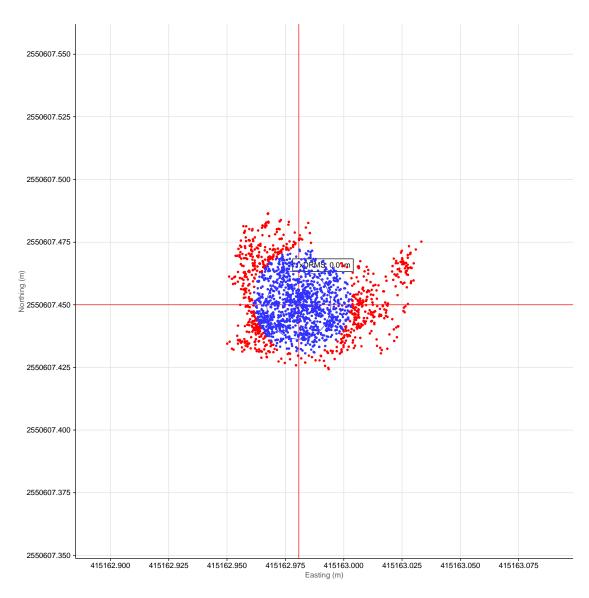
Session Length: 00:29:59

Mean Position for Tripod CentreOfGravity					
	WGS 84 / UTM zone 43N	WGS 84(2D)			
Latitude	23°03'42.68240"N	23°03'42.68240"N			
Longitude	074°10'18.53341"E	074°10'18.53341"E			
Height	209.018m Ell.	209.018m Ell.			
Easting	4,15,162.981m E (SD: ±0.01m)				
Northing	25,50,607.450m N (SD: ±0.01m)				
Height	265.119m Ort. (SD: ±0.04m Ort.)				

Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

Mean Position to Waypoint		
Waypoint	FSL	
Easting	4,15,163.020m E	
Northing	25,50,607.461m N	
Range	0.04m Geodetic	
Bearing TO	74.02°True	
Bearing FROM	254.02°True	

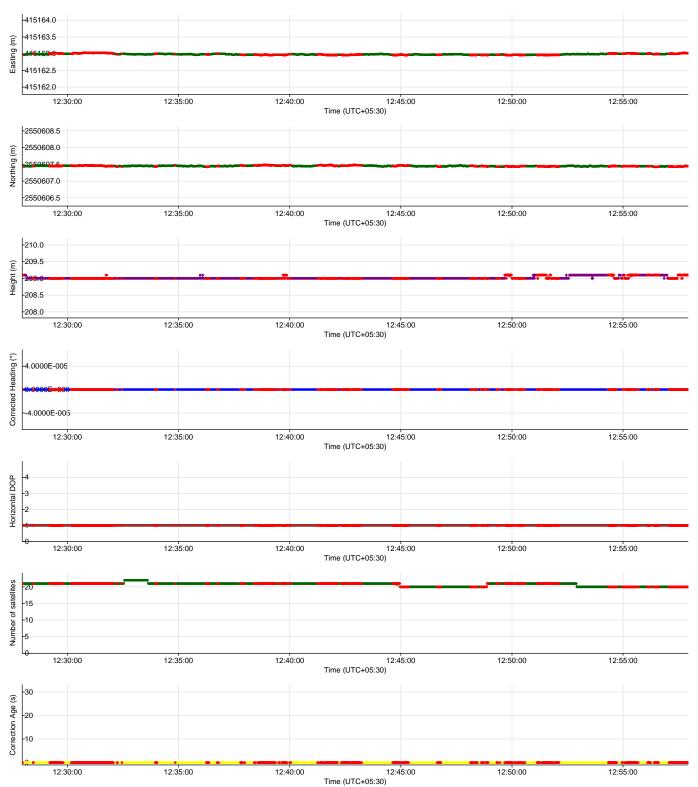
Section Officer Client Representative Govt. of Gujarat



Geodetic Parameters

Name : WGS 84 / UTM zone 43N					
EPSG Code	EPSG::32643	EPSG::32643			
Local Geodetic Datum Parameters					
Datum	World Geodetic System 1984	World Geodetic System 1984 EPSG::6326			
Ellipsoid	WGS 84	WGS 84			
Semi major axis	a = 63,78,137.000 m	a = 63,78,137.000 m			
Inverse flattening	1/f = 298.257223563	1/f = 298.257223563			
Local Projection Parameters					
Map Projection	Transverse Mercator	Transverse Mercator			
Grid System	UTM zone 43N	UTM zone 43N EPSG::16043			
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N			
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E			
Scale Factor on Central Meridian	0.9996	0.9996			
False Easting	500 000 m				
False Northing	0 m				

Scatter Plot



Mean Position

	Easting	Northing
Tripod	4,15,162.981m E	25,50,607.450m N

Time Series Plots for Tripod

FUGRO SURVEY (INDIA) PVT. LTD.

Diagram Report of Machhannala Dam Temporary BM (TBM-02)

	HYD-20-174630	Job Name:	Bathymetric Survey
Station Name: Mag	achhannala Dam	Location:	Gujarat, West Coast of India
Party Chief : Arp	pit Bose	Job Engineer/Surveyor :	Mathiazhagan V.
Date of Observation: 19- (Date & Time))-02-2021 & 17:49hrs	End of Observation: (Date & Time)	19-02-2021 & 18:19hrs

1. Station Name: TBM-02.

Positioning System Verification Results						
World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North					ı	
Sensor	Serial No.	Starfix.Seis Name	Method	File Type	Mean Differences	SD
TRIMBLE BX992 RECEIVER	025- 000096 01	PRI_DGPS	Mean position report	FBF	NA	0.04

A= TBM-02 Height from MSL 283.986m

B= Antenna Height from BM 1.389m (Measure by Tape)

Ellipsoidal height of Antenna= 215.831m

Ellipsoidal Height of BM 215.831m-1.389m=214.442m

C is the center point of BM.

Position Of Antenna:-

Latitude: 23°03′43.72157″N, Longitude: 74°10′19.64787″E

Easting: 4,15,194.875m ENorthing: 25,50,639.228m N

Prepared By: Arpit Bose.

Project ID	J-HYD-20-174630_clone		
Location	Central Gujarat		
Client	Narmada Water Resources Govt. of Gujarat	Vessel	Tripod
Comment			

Session Name: TBM-02-MACHCHANALA DAM-v1

Records Used: 859 of 1799

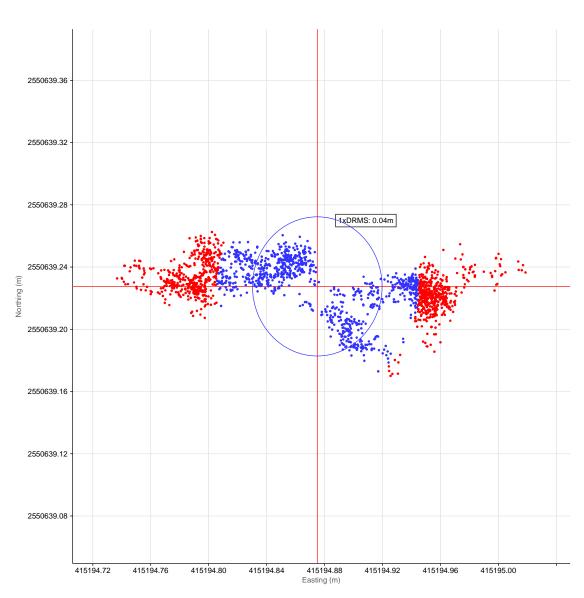
Start Time: 19 Feb 2021, 17:49:16+05:30 End Time: 19 Feb 2021, 18:19:15+05:30

Session Length: 00:29:59

Mean Position for Tripod CentreOfGravity					
	WGS 84 / UTM zone 43N	WGS 84(2D)			
Latitude	23°03'43.72157"N	23°03'43.72157"N			
Longitude	74°10'19.64787"E	74°10'19.64787"E			
Height	215.831m Ell.	215.831m Ell.			
Easting	4,15,194.875m E (SD: ±0.04m)				
Northing	25,50,639.228m N (SD: ±0.02m)				
Height	271.932m Ort. (SD: ±0.06m Ort.)				

Sensors	Sensor Averages	SD
Heading	0.00°T 0.00°G	±0.0°
Pitch		
Roll		
Depth (Sounder)	0.0m	±0.00m
Depth (Manual)	0.0m	N/A

Mean Position to Waypoint		
Waypoint	FSL	
Easting	4,15,163.020m E	
Northing	25,50,607.461m N	
Range	45.00m Geodetic	
Bearing TO	224.76°True	
Bearing FROM	44.76°True	

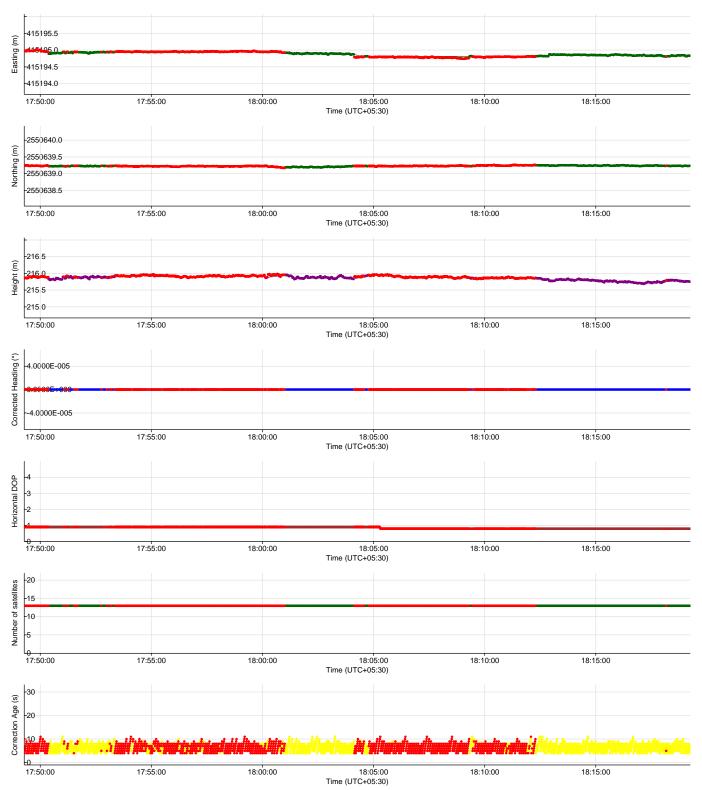


Geodetic Parameters

Name : WGS 84 / UTM zone 43N				
EPSG Code	EPSG::32643	EPSG::32643		
Local Geodetic Datum Parameters				
Datum	World Geodetic System 1984	EPSG::6326		
Ellipsoid	WGS 84	WGS 84		
Semi major axis	a = 63,78,137.000 m	a = 63,78,137.000 m		
Inverse flattening	1/f = 298.257223563	1/f = 298.257223563		
Local Projection Parameters				
Map Projection	Transverse Mercator	Transverse Mercator		
Grid System	UTM zone 43N	EPSG::16043		
Latitude Origin	00° 00' 00.000" N	00° 00' 00.000" N		
Central Meridian	075° 00' 00.000" E	075° 00' 00.000" E		
Scale Factor on Central Meridian	0.9996	0.9996		
False Easting	500 000 m	500 000 m		
False Northing	0 m	0 m		

FUGRO

Scatter Plot



Mean Position

	Easting	Northing
Tripod	4,15,194.875m E	25,50,639.228m N

Time Series Plots for Tripod

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

Station Name: FSL-TBM Machchanala Dam

	Positioning Sy	stem Verification W	/ith BX-992 Reciever a	nd Spatial Dual		
World Geodetic System 84, UTM Projection, CM 075º East, Zone 43 North						
Sensor	Serial No.	Easting mE	Northing mN	Latitude	Longitude	Ellipsoidal height (m)
TRIMBLE BX992 RECEIVER	025-00009601	415163.020	2550607.461	23°03'42.682"N	74°10'18.534"E	208.15
Spatial Dual	025-272968	415162.981	2550607.45	23°03'42.682"N	074°10'18.533"E	208.32
	Difference	0.039	0.011			-0.17

JHYD20-174630-Volume 4-Machhannala Reservoir/R0 [00] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project

Appendix D

-fugro

SBES Calibration

ŪGRO

SBES Barcheck Correction Table

Project No.	Project Title:	Vessel:	Place:
J-HYD-20-174630	Bathymetry Survey	POLARIS	MACHCHANALA DAM
Date:	Time:	Client:	
17-Feb-21	17:31	GOV. OF GUJRAT	
Observed By: PRITAI	M SETH	Echo Sounder Model and SL. No.	Area Depth
Project No. J-HYD-20	-174630	E20 ECHOTRAC	10

Echo Sounder Settings

Draft HI	Draft LO	Sound Velocity		
0.3	0.2	Average Upto D		
0.5	0.3	1483	10	
Barcheck Frequency selected	ected Survey Frequency: Manufactu		rer's Accuracy	
High 200 KHz	33 and 200 KHz	0.10 % of Depth	0.01 m	

	vations while lowe	ring	Observations while hoisting			
Bar Depth (m)	ES Reading (m)	Difference (m)	Bar Depth (m)	ES Reading (m)	Difference (m)	
1	1	0	8	8	0	
2	2	0	7	7	0	
3	3.01	-0.01	6	6	0	
4	4	0	5	5	0	
5	5	0	4	4	0	
6	5.99	0.01	3	3	0	
7	7	0	2	2	0	
8	8	0	1	1	0	

Average Std. Dev	0.00 0.0053	Average Std. Deviation	0.00 0.0000
		Cumulative Average	0.00
		Cumulative Std. Deviation	0.0038

Arbit 1305e Partychief

Arpit Bose FSINPVT

Deputy Executive Engineer

Machhanala Dam,Govt. of Gujrat

Narmada Water Resources, Water Supply and Kalpsar Department / Government of Gujarat

Location Name:		Machhannala Dam	Date:	21/06/2021		Instrument Name	LYNX						
Work:		RTK Observation by Topo	graphy Team	•		Model no.	H6	1					
			• • •			•		-					
Station Name		Observation Duration	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)		Remarks					7	
Machhannala DAM FSL-TBM	By rover 1	2 sec	415163.042	2550607.455	277.881	XYZ Value generated by RTK of T	opography Team, Base Station	n on Machhannala	DAM TBM 2 Fugro Pi	Field Photo\IMG 20210621 1	<u>04706.jpg</u>		
Machhannala DAM FSL-TBM	By rover 2	2 sec	415163.018	2550607.465	277.906	XYZ Value generated by RTK of T	opography Team, Base Station	n on Machhannala	DAM TBM 2 Fugro Pi	Field Photo\IMG 20210621 1	<u>12053.jpg</u>		
Machhannala DAM FSL-TBM	By rover 3	2 sec	415163.030	2550607.464	277.911	XYZ Value generated by RTK of T	opography Team, Base Station	n on Machhannala	DAM TBM 2 Fugro Pi	Field Photo\IMG 20210621 1	<u>12138.jpg</u>		
						-							
				Fugro Provided	XYZ Value						Differe	nce With Fugro Provi	ded XYZ Value
Station Name		<u>Remarks</u>	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)	Station Name	Remarks	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)	Easting (mE)	Northing (mN)	Local Height w.r.t MSL (m)
Station Name MACHHANALA DAM FSL	L-TBM	<u>Remarks</u> Fugro Provided Value	Easting (mE) 415163.020	Northing (mN) 2550607.461	Local Height w.r.t MSL (m) 277.860	Station Name Machhannala DAM FSL-TBM	Remarks Check by Rover 1	Easting (mE) 415163.042	Northing (mN) 2550607.455	Local Height w.r.t MSL (m) 277.881	Easting (mE) -0.022	<u>Northing (mN)</u> 0.006	Local Height w.r.t MSL (m) -0.021
	L-TBM												
	L-TBM					Machhannala DAM FSL-TBM	Check by Rover 1	415163.042	2550607.455	277.881	-0.022	0.006	-0.021
	L-TBM					Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2	415163.042 415163.018	2550607.455 2550607.465	277.881 277.906	-0.022 0.002	0.006	-0.021 -0.046
	L-TBM					Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2	415163.042 415163.018	2550607.455 2550607.465	277.881 277.906	-0.022 0.002	0.006	-0.021 -0.046
	L-TBM					Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2	415163.042 415163.018	2550607.455 2550607.465	277.881 277.906	-0.022 0.002	0.006	-0.021 -0.046
	L-TBM		415163.020	2550607.461	277.860	Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2 Check by Rover 3	415163.042 415163.018 415163.030	2550607.455 2550607.465 2550607.464	277.881 277.906	-0.022 0.002	0.006	-0.021 -0.046
	L-TBM		415163.020	2550607.461 Note: Machhanna	277.860 ala DAM FSL(Full Supply Leve	Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2 Check by Rover 3 Provided), Machhannala DA	415163.042 415163.018 415163.030	2550607.455 2550607.465 2550607.464	277.881 277.906 277.911	-0.022 0.002 -0.010	0.006	-0.021 -0.046
	L-TBM		415163.020	2550607.461 Note: Machhanna	277.860 ala DAM FSL(Full Supply Leve	Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM Machhannala DAM FSL-TBM	Check by Rover 1 Check by Rover 2 Check by Rover 3 Provided), Machhannala DA	415163.042 415163.018 415163.030	2550607.455 2550607.465 2550607.464	277.881 277.906 277.911	-0.022 0.002 -0.010	0.006	-0.021 -0.046

JHYD20-174630-Volume 4-Machhannala Reservoir/R0 [00] | Providing Services for Conducting Bathymetric Survey of Reservoirs of Central Gujarat Under National Hydrology Project

Appendix D

Narmada, Water Resources, Water Supply and Kalpsar Department WRD (Water Resources)

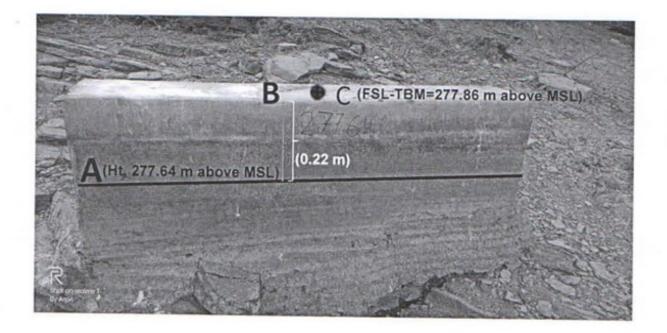
Appendix E

Benchmark Descriptions

(7 pages)

Job No. :	J_HYD_20_174630	
Client :	Govt. Of Gujarat	Station Name:
Location :	Machhannala Dam	
Date:	24-02-2021	FSL

1. Client provided FSL RL Value is 277.640m above MSL


A=FSL RL Value stands on black mark line = 277.640 m above MSL

B=From black mark line to top of pillar is 0.22m (measured by tape).

C=Centre point of the pillar and name would be FSL-TBM.

Fugro will transfer all levels with respect to FSL-TBM.

So the value of top of pillar (point "C") is 277.860 m with respect to MSL and is named as FSL-TBM.

ARPIT BOSE

FSINPVT

CLIENT REP. HIL Patelia GOVT. OF GUJRAT

			Station / Bench Mar	rk Description	
TUGRO		Job No. :	J_HYD_20_174630		on Name:
		Client :	Govt. Of Gujarat	<u></u>	
Fugro Survey (Inc		Location :	Machchanala Dam		
D-222/30, TTC Inc		Observed By:	Arpit Bose, Mathiazhagan	FS	L-TBM
MIDC, Nerul, Na Pin - 400 075		Date:	24-02-2021		
		Brief Descript	ion of the Method Adopted		
1. Purpose of Establishin	g the station	:- Ref. Station	for Bathymetric Survey of Reser	voir and Topography su	rvey
2. Equipment Deployed		:- Trimble BX	992 Receiver		
3. Method Used		:- 30 minutes	Mean Position for Tripod Centre	Of Gravity	
	Fi	nal Coordinates i	n WGS84 Datum/UTM zone-43	N	
GEOGRAPHICAL COOF	RDINATES:		UTM COORDINATES:		CM: 75° E
LATITUDE:	23°03'42.682	277"N	EASTING:	415163.020m E m	$\sigma = +/-0.01 \text{ m}$
LONGITUDE :	74°10'18.534	\$77"E	NORTHING:	2550607.461m N m	$\sigma = +/-0.01 \text{ m}$
ELLIPSOIDAL HEIGHT:	208	3.15m	CONVERGENCE :	-0.50293 De	grees
HEIGHT ABOVE LAT/CD		NA	Ht above Local MSL:	277.860m	
LOCATION & ACCESS :			ed near water body after entering ation is 30m beside of water level		stair to water body
STATION MARKING :	It's a Concrete Pi	ller establised by (Govt. of Gujarat. And point is mar	ked with red paint.	
Expected durability of the	Station (Years) :		10years		
DETAILED DIAGRAM :		N	A		NŢ

Note:-

Coordinates are measured by DGPS observation. Client hasn't supplied any BM value. Client has supplied FSL RL Value. FSL RL Value stands with respect to MSL. FSL RL Value is stands 22cm down from top of pillar. So FSL RL Value is 277.640m therefore FSL-TBM Value is 277.640m+0.22m=277.860m with respect MSL. Value has checked and verified in front of deputy executive engineer in site.

Av it Bose

Arpit Bose Party chief (FSINPVT)

Deputy Executive Engineer Machhanala Dam GOVT. OF GUJRAT

5		Station / Bench M	lark Descript	ion
UGRO	Job No. :	J_HYD_20_174630		Station Nama:
	Client :	Govt. Of Gujarat		Station Name:
Fugro Survey (India) Pvt. Ltd. D-222/30, TTC Industrial Area,	Location :	Machchanala Dam		
MIDC, Nerul, Navi Mumbai	Observed By:	Arpit Bose, Mathiazhagan		TBM-02
Pin - 400 075 (India)	Date:	24-02-2021		
	Brief Descript	tion of the Method Adopted		
Purpose of Establishing the station	:- Ref. Station	for Bathymetric Survey of Rese	rvoir and Topogra	aphy survey.
Equipment Deployed	:- Trimble BX9	992 Receiver		
Method Used	30 minutes I	Mean Position for Tripod Centre	Of Gravity	
Ē	inal Coordinates	in WGS84 Datum/UTM zone-4	<u>3N</u>	
EOGRAPHICAL COORDINATES:		UTM COORDINATES:		CM: 75° E
ATITUDE: 23°03'43.721	57"N	EASTING:	415194.875m	E $\sigma = +/-0.04 \text{ m}$
ONGITUDE : 74°10'19.647	'87"E	NORTHING:	2550639.228m	N σ = +/- 0.02 m
LLIPSOIDAL HEIGHT: 214.4	142m	CONVERGENCE :	-0.502	93 Degrees
IEIGHT ABOVE LAT/CD:	NA	Ht above Local MSL:	283.986	
Expected durability of the Station (Years) : DETAILED DIAGRAM :	N	01 year		
You are here of O Machan dan P	s Kheda Ni Sanor (Esr-Urse			

Note:-

Coordinates are measured by DGPS observation. RL value of TBM-02 has transferred from FSL-TBM RL value . FSL-TBM RL value is stands with respect to MSL.

Ar lit C Arpit Bose

Party chief (FSINPVT)

Deputy Executive Engineer Machhanala Dam(Govt. Of Gujarat)

LEVELLING RECORD FROM FSL TO TBM-02

Job No :	J-HYD-20-174630		
		Client Name	GOVT. OF GUJARAT
	AUTO LEVEL	Equipment Serial/Asset No:	258398 / 273746
Area/Location Name:	MACHCHANALA DAM	Date of Observation:	19-02-2021
Observer's Name:	Arpit Bose	Staff Holder's Name:	Mathizaghan

LEVELLING FROM FSL TO TBM-02 & REVERSE

FSL-TBM to TBM-02					
LEG NO	BACK SIGHT(m)	FORE SIGHT(m)			
1	3.76	1.379			
2	3.977	0.232			
SUM	7.737	1.611			

TBM-02 to FSL-TBM					
LEG NO	BACK SIGHT(m)	FORE SIGHT(m)			
1	0.224	3.967			
2	1.361	3.744			
SUM	1.585	7.711			

	LEVELLING FROM FSL - TBM-02	
	A) Height Difference between FSL-TBM to TBM-02 = 7.737m-1.611m= 6.126m	
	B) Height Difference between TBM-02 to FSL-TBM = 1.585m-7.711m=-6.126m	
C	The station FSL-TBM is 277.860m above the MSL	
	D) The station TBM-02 is 6.126m above the FSL-TBM point.	277.860m+6.126m= 283.986m
	So the Station TBM-02 is 283.986m above the MSL.	

NOTE-

1.Client did not provided any XYZ value of BM. 2.Client has provided FSL RL value is 277.640m with respect to MSL. 3.Station FSL-TBM is 22cm up from FSL RL Value so level of FSL-TBM is 277.860m above MSL

Arhi+ Bose

Party Chief ARPIT BOSE FSINPVT

Deputy Executive Engineer

Machhanala Dam GOVT. OF GUJRAT

<u>RECORD OF LEVELLING</u> (To be used for levelling from an established BM to the Zero of ATG / Tide Pole)							
I availia a	J-HYD-20-17			Client Name :	Govt. of Gujrat		
Annall and the	TOTAL STATION TRIMBLE S3			Equipment Serial/Asset No:	91210063		
THE O				Date of Observation:	24-02-2021		
ATG Zero setup at (m):	Yes, ATG RADAR SENSOR			Observer's Name:	Arpit Bose		
in o zero serup at (m).	0		TBM Level at ATG Site	Prism Holder's Name:	Mathiazhagan V.		

Start Point BM Name/ID:		FSL-TBM	
Start Point BM Value (RL) (m):	277.860	FROM	MSL

End Point Level Name:	Bottom of ATG RADAR	
End Point Level Value (m):	275.739	

FSL-TBM to ATG							
Station Name	Backsight(TBM-02)	Fore Sight(ATG)					
FSL-TBM	283.987	275.739					

ATG to FSL-TBM							
Station Name	Backsight(ATG)	Fore Sight(TBM-02)					
FSL-TBM	275.739	283.986					

Misclosure =	0.000	meters
Adjusted Tide Gauge Height =	0.000	meters
Hence, the Zero of Tide Gauge is	275.739	metres Above MSL

1.RL Value of station TBM-02 is 283.986m above MSL.

Checked by:Arpit Bose Surveyor's Name:Arpit Bose Date:24-02-2021

Ar hit Bose Party Chief

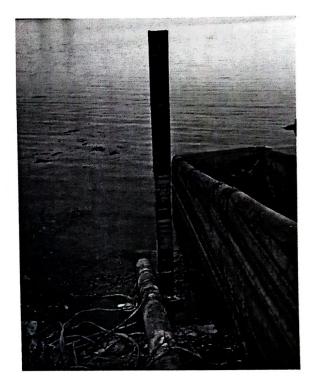
Party Chief ARPIT BOSE FSINPVT

Deputy Executive Engineer Machhanala Dam GOVT. OF GUJRAT

LEVELLING RECORD-Verification of Client provided level of FSL and WLP

Job No :	J-HYD-20-174630	Client Name :	GOVT. OF GUJARAT
Levelling Equpt Used:	TOTAL STATION TRIMBLE S3	Equipment Senal/Asset No:	258398 / 273746
	MACHHANALA DAM	Date of Observation:	24-02-2021
Observer's Name:	Arpit Bose	Staff Holder's Name:	Mathizaghan

LEVELLING FROM FSL-TBM TO WLP & REVERSE


FSL-TBM to WLP WLP to FS				WLP to FSL-TBM	
Station Name	Backsight(TBM-02)	Fore Sight(WLP)	Station Name	Backsight(WLP)	Fore Sight(TBM-02)
FSL-TBM	283.986	275.001	FSL-TBM	275	283.987

LEVELLING FROM FSL - WLP

FSL-TBM RL Value w.r.t MSL is 277.860m TBM-02 RL Value w.r.t MSL is 283.986m

So the WLP point is 275m above the MSL.

NOTE
Levelling is done for verify FSL-TBM RL value with WLP RL Value w.r.t MSL.
Client did not provided any RL value of BM.
Client has provided FSL RL value is 277.640m. above MSL.
Astation FSL-TBM is 22cm up from FSL RL Value so level of FSL-TBM is 277.860m above MSL.
WLP RL value is showing 275m and our levelling value is 275m.
Everyday fugro will observe water level from this water level plate.

Arh+ Bose

Party Chief ARPIT BOSE FSINPVT

Deputy Executive Engineer Machhanala Dam GOVT. OF GUJRAT

Ť	GRD		REPORT O	N RADAR ATG SETUF	PFOR DATA LOG	GING
Job No: J-HY	/D-20-174630		L]	ob Name: Singlebeam Bathy	metry Survey	
Client: Govt. of Gujrat				Survey Area / Site: Central Gujrat.		
			B. JPI INTERNA - Internet spectrum services	a with the subscreen and the subscreen at the		
	a) ATG Setup on:	19-Feb-21	Setup, Recovery and At: 1	Data Download Informat 400 hrs	By: Mathizhaga	n V.,Arpit Bose
	 b) ATG Time set to: c) Recovered on: 	UTC		Logging in	terval set to: 10 min	
	d) Data Downloaded on	20-Feb-21	At: At: 1	-	RADAR AT	G Setup Diagram
					HILL SIDE	
	ATC BM Name :	FSL-TBM	talls	Remarks	\neg	
	BM Source :	FSL-TBM			$+$ \vee	RADAR
	BM to CD (m) :	NA			_	Sensor
	MSL to CD (Z _e) (m): BM to ATG (m) :	NA	t	A		Level
	ATG to MSL (m) :	0.000			-	
	C-O from ATG Calibration			rom calibration report	-	
	(m): RADAR offset value to		ľ	tom calibration report	-	
	Tide Master dec			276.716		
		Key to RADA	ATG Setup Diagram			
	A Hist BM share CDA		nsor set up above BM			
	A HI of BM above CD/L B HI of ATG Sensor at	ove BM (m)		NA 0.000	MSL	±_•
	C Ht of ATG sensor fro	m MSL (m)		275.739		
	D Ht of MSL Above CD	in metres (Z ₀)		NA		
a) <u>Method of (</u>	ATG Calibra		erifications Carriedout	at Site Bottom surface of Radar using		
a) <u>Method of (</u> pre-calibrated t	ATG Calibra	tion and Daily \	erifications Carriedout			
a) <u>Method of (</u> pre-calibrated t b) <u>Daily Verific</u>	ATG Calibra Calibration Adopted, Mea tape	asured the actual h	erifications Carriedout	Bottom surface of Radar using	or the ATG Data Logo	ed
a) <u>Method of (</u> pre-calibrated t b) <u>Daily Verific</u>	ATG Calibration Adopted, Meatape. cations Carried out:	asured the actual h	Firmware version: 074170	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated t b) <u>Daily Verific</u>	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m):	asured the actual h	Firmware version: 074170	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> <u>Date & Time</u> 20 Feb/17:50	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1	tion and Daily 1 asured the actual h tion C-O (m)	Firmware version: 074170 Firmware version: 074170 File Creation Date. 19/02/ Battery Level: 5.5 TideMaster S/N: 48693	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> <u>Bate & Time</u> 20 Feb/17:50	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date. 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 3 Site info: GUJARAT	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 7 TideMaster S/N: 48693 0 Station ID: 01 3 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3	Bottom surface of Radar using <u>Header Information 1</u> 588		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 7 TideMaster S/N: 48693 2 Station ID: 01 3 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Station ID: 01 Sta	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 7 TideMaster S/N: 48693 2 Station ID: 01 3 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date. 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAS1 Radar: Mode: Tide Firmware: 0745703.c A	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily 1 asured the actual h tion C-O (m) 1.547 -0.02 1.547 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 3 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAS1 Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>f</u> Date & Time 20 Feb/17:50 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Station ID: 01 Station ID: 01 Station ID: 01 Station ID: 01 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 3 Datum: 0	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibration Adopted, Meatape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.520 -1 1.527 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Station ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 3 Datum: 0 Pre amble: 6	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 3 Datum: 0 Pre amble: 6 Wind speed units: m\sec	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Station ID: 01 Station ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 3 Datum: 0 Pre amble: 6	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47 'ER		ed
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Fire Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Distation ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 Datum: 0 Pre amble: 6 Wind speed units: m\sec Air Pressure units: mBar Air Temperature units: D	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47 'ER	or the ATG Data Logo	ed by :
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 File Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Distation ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703.c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 3 Datum: 0 Pre amble: 6 Wind speed units: m\sec Air Pressure units: mBar	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47 'ER	or the ATG Data Logo	
a) <u>Method of (</u> pre-calibrated (b) <u>Daily Verific</u> b) <u>Daily Verific</u> <u>5</u> <u>Date & Time</u> <u>20 Feb/17:50</u> 20 Feb/18:00	ATG Calibra Calibration Adopted, Mea tape cations Carried out: Results of ATG Calibra Measured by (m): Tape (C:) ATG (O:) 1.5201 1.5201 1.530 -1	tion and Daily \ asured the actual h tion C-O (m) 547 -0.02 553 -0.02	Firmware version: 074170 Fire Creation Date: 19/02/ Battery Level: 5.5 TideMaster S/N: 48693 Distation ID: 01 Site info: GUJARAT Calibrated: 17/12/2014 Mode: B3 Pressure units: m output format: TIDEMAST Radar: Mode: Tide Firmware: 0745703 c A Serial Number: 46404 Min limit: 0.11 Max Limit: 50 Datum: 0 Pre amble: 6 Wind speed units: m\sec Air Pressure units: mBar Air Temperature units: D	Bottom surface of Radar using <u>Header Information 1</u> 588 2021 17:41:47 'ER	or the ATG Data Logo	ed by :

Notes:-

a) Copy and Paste ATG Configuration Header File Information from the Logged file.
 b) Select Tide File- Right Click-Open with Text Pad --Copy Header Information -- Paste in Header Information Window

1 ATG Header Info:-2 ATG Calibration:-

iose Party Chief ARPIT BOSE FSINPVT

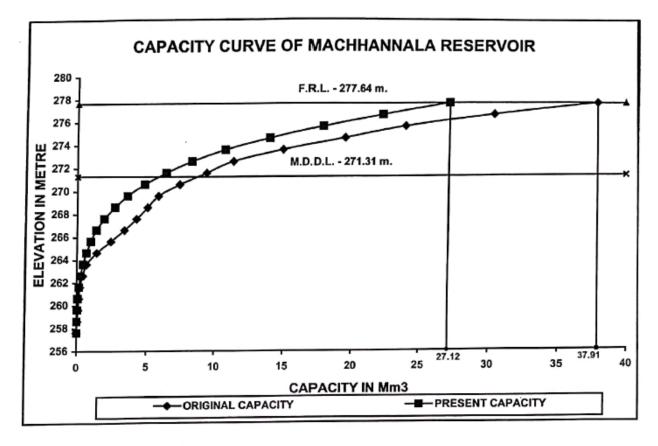
Deputy Eve gineer Machhanala Dam GOVT. OF GUJRAT

.

Appendix F

Client Supplied Capacity Curve (1982 and 1999)

(2 pages)



Strip	Strip R. L.	Cumulative	Capacity in Mm	n ³
No.	in m.	Original	Present	Remarks
1	277.64 -276.64	37.91	27.12	F.R.L.
2	276.64 -275.64	30.38	22.25	
3	275.64 -274.64	23.94	17.85	
4	274.64 -273.64	19.46	14.01	
5	273.64 -272.64	14.99	10.81	
6	272.64 -271.64	11.41	8.35	
7	271.64 -270.64	9.42	6.45	
8	270.64 -269.64	7.44	4.85	
9	269.64 -268.64	5.88	3.62	
10	268.64 -267.64	5.07	2.69	
11	267.64 -266.64	4.27	1.94	
12	266.64 -265.64	3.39	1.38	
13	265.64 -264.64	2.41	0.99	
14	264.64 -263.64	1.42	0.68	
15	263.64 -262.64	0.69	0.44	
16	262.64 - 261.64	0.42	0.26	
17	261.64 -260.64	0.23	0.15	
18	260.64-259.64	0.17	0.08	
19	259.64-258.63	0.11	0.033	
20	258.64-257.76	0.05	0.0028	

Client Supplied Capacity Curve (1982 and 1999)

Appendix G

List of Charts

(1 page)

List of Reports / Documents to be Submitted

Sr. No.	Type of Report / Document	Reporting Schedule	No. of Copies (Hard)	Remarks
1	Survey Procedure (QA Document)	01 December 2020	1	Submitted
2	Mobilisation Report (With Results of Calibration)	26 October 2020		Fugro Office copy only
4	Draft Report	30 days from completion of survey	1	Submitted
5	Final Report on Survey	1 week from receipt of client's comments	10	This Document

Details of Charts Accompanying this Report

Details of Charts							
SI. No.	Charts showing Results of Bathymetry and Topography Survey at Machhannala Reservoir	Sheet No.	Encl. No.	Drawing No.: JHYD-20- 174630/WRD/GUJARAT/BS/	Rev. No	HS	VS
1	Reservoir Bed and Topographic Heights	01 of 01	01 of 03	B/01/9515	0	1:6000	-
2	Contour Map of Machhannala Reservoir	01 of 01	02 of 03	B/01/9659	0	1:6000	-
3	Shaded Relief Image Prepared from SBES Data	01 of 01	03 of 03	1/01/9660	0	1:6000	-
Details of Other Deliverables							
1	L-section	Soft copy					
2	C-section at every 100 m	Soft copy					

